
Convert, Edit, and Compose Images

Im
ag

e Magick

John Cristy

ImageMagick Studio LLC
http://www.imagemagick.org

Copyright

Copyright (C) 2002 ImageMagick Studio, a non-profit organization dedicated to
making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (”ImageMagick”), to deal
in ImageMagick without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
ImageMagick, and to permit persons to whom the ImageMagick is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of ImageMagick.

The software is provided ”as is”, without warranty of any kind, express or im-
plied, including but not limited to the warranties of merchantability, fitness for a
particular purpose and noninfringement. In no event shall ImageMagick Studio
be liable for any claim, damages or other liability, whether in an action of con-
tract, tort or otherwise, arising from, out of or in connection with ImageMagick
or the use or other dealings in ImageMagick.

Except as contained in this notice, the name of the ImageMagick Studio shall not
be used in advertising or otherwise to promote the sale, use or other dealings in
ImageMagick without prior written authorization from the ImageMagick Studio.

v

Contents

Preface . vii

Part 1: Quick Start Guide ��� 1

1 Introduction . 3

1.1 What is ImageMagick . 3

1.2 Getting Help . 3

2 Image Primer . 4

2.1 What is an Image . 4

2.2 Image Depth . 4

2.3 Colormapped Images . 4

2.4 Compression . 4

2.5 Colorspace . 4

2.6 Meta-Information . 4

2.7 Image Formats . 4

3 Image Tools . 5

4 Image Transformations . 6

4.1 How to specify an image . 7

4.2 Convert from one Image Format to Another 7

4.3 Colormap Manipulation . 7

4.4 Resize an Image . 7

4.5 Crop . 7

4.6 Enhance . 7

vi

Contents vii

4.7 Effects . 7

4.8 Decorate . 7

4.9 Annotate . 7

4.10 Draw . 7

4.11 Composite . 7

4.12 Meta-Information . 7

4.13 Miscellanious Transforms . 7

5 Advanced ImageMagick Features . 8

5.1 Working with Multi-resolution Images . 9

5.2 Working with an Image Sequence . 9

5.3 Working with a Group of Images . 9

5.4 Working with Raw Images . 9

5.5 Using ImageMagick from a Web Browser 9

Part 2: Application Programming Interface ��������������������� 11

6 C Application Programming Interface . 13

6.1 Working with Blobs . 13

6.2 Working with Threads . 13

7 C++ Application Programming Interface . 14

7.1 Working with Blobs . 14

7.2 Working with Threads . 14

8 Perl Application Programming Interface . 15

8.1 Background . 15

9 PHP Application Programming Interface . 16

9.1 Background . 16

10 Other Application Programming Interfaces . 17

10.1 Java . 17

10.2 Python . 17

viii Contents

10.3 ImageMagick Integration Project . 17

Part 3: User’s Guide ��� 19

11 Image Channels . 21

11.1 Working with Image Channels . 21

12 Image Painting . 22

12.1 Image Painting . 22

13 Color Profiles . 23

13.1 Working with Color Profiles . 23

14 Image Drawing . 24

14.1 SVG . 24

14.2 MVG . 24

Part 4: Installation And Administration Guide ��������������� 25

15 Installing from Binary . 27

15.1 Downloading . 27

15.2 Linux RPM . 27

15.3 Windows . 27

15.4 VMS . 27

15.5 Unix . 27

15.6 Other . 27

16 Installing from Source . 28

16.1 Downloading . 28

16.2 Unix . 28

16.3 Windows . 28

16.4 Macintosh . 28

16.5 VMS . 28

Contents ix

17 Customizing ImageMagick . 29

17.1 Image Depth . 29

17.2 Image Cache . 29

17.3 Delegates . 29

17.4 magic.mgk . 29

17.5 fontmap.mgk . 29

Part 5: Reference Manual ��� 31

18 Supported Image Formats . 33

19 Commandline options . 38

20 API Structures and Enumerations . 70

20.1 API Structures . 70

20.2 API Enumerations . 81

21 C API Methods . 91

21.1 Methods to Constitute an Image . 91

21.2 ImageMagick Image Methods . 93

21.3 Working With Image Lists . 103

21.4 Methods to Count the Colors in an Image 107

21.5 Methods to Reduce the Number of Unique Colors in an Image . 109

21.6 Methods to Segment an Image with Thresholding Fuzzy c-
Means . 112

21.7 Methods to Resize an Image . 112

21.8 Methods to Transform an Image . 114

21.9 Methods to Shear or Rotate an Image by an Arbitrary Angle . . . 117

21.10 Methods to Enhance an Image . 119

21.11 ImageMagick Image Effects Methods . 120

21.12 ImageMagick Image Decoration Methods 130

21.13 Methods to Annotate an Image . 131

21.14 Methods to Draw on an Image . 132

21.15 Methods to Create a Montage . 136

x Contents

21.16 Image Text Attributes Methods . 137

21.17 Methods to Compute a Digital Signature for an Image 138

21.18 Methods to Interactively Animate an Image Sequence 139

21.19 Methods to Interactively Display and Edit an Image 139

21.20 Methods to Get or Set Image Pixels . 140

21.21 ImageMagick Cache Views Methods . 142

21.22 Image Pixel FIFO . 144

21.23 Methods to Read or Write Binary Large Objects 144

21.24 ImageMagick Registry Methods . 145

21.25 Methods to Read or List ImageMagick Image formats 147

21.26 ImageMagick Error Methods . 149

21.27 ImageMagick Memory Allocation Methods 152

21.28 ImageMagick Progress Monitor Methods 153

22 C++ API Methods . 154

23 Perl API Methods . 155

23.1 Image::Magick Attributes . 155

23.2 Image::Magick Methods . 170

23.3 Image::Magick Errors . 196

24 Recognized Color Keyword Names . 198

References . 202

A Appendix A . 203

Preface

About This Book

Acknowledgement

xi

Part 1
Quick Start Guide

1 Introduction

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

1.1 What is ImageMagick

1.1.1 Command-line Utility

1.1.2 Application Programming Interface

1.1.3 Scripting Language

1.1.4 General Purpose Imaging Solution

1.2 Getting Help

1.2.1 Web Site

1.2.2 Mailing List

1.2.3 Defect Tracking System

3

2 Image Primer

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

2.1 What is an Image

2.2 Image Depth

2.3 Colormapped Images

2.4 Compression

2.4.1 Lossless

2.4.2 Lossy

2.5 Colorspace

2.5.1 RGB

2.5.2 CMYK

2.6 Meta-Information

2.7 Image Formats

4

3 Image Tools

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

3.0.1 Identify

3.0.2 Convert

3.0.3 Mogrify

3.0.4 Composite

3.0.5 Montage

3.0.6 Display

3.0.7 Animate

3.0.8 Import

3.0.9 Conjure

5

4 Image Transformations

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

6

4 Image Transformations 7

4.1 How to specify an image

4.1.1 Implicitly

4.1.2 Explicitly

4.1.3 By URL

4.2 Convert from one Image Format to Another

4.3 Colormap Manipulation

4.4 Resize an Image

4.5 Crop

4.6 Enhance

4.7 Effects

4.7.1 Special Effects

4.7.2 Image Preview

4.8 Decorate

4.9 Annotate

4.10 Draw

4.11 Composite

4.12 Meta-Information

4.12.1 Comment

4.13 Miscellanious Transforms

4.13.1 Append

5 Advanced ImageMagick
Features

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

8

5 Advanced ImageMagick Features 9

5.1 Working with Multi-resolution Images

5.1.1 PCD

5.1.2 PTIF

5.2 Working with an Image Sequence

5.2.1 Animation

5.2.2 Delay

5.2.3 Loop

5.3 Working with a Group of Images

5.4 Working with Raw Images

5.4.1 Size

5.4.2 Depth

5.4.3 Interlace

5.5 Using ImageMagick from a Web Browser

11

Part 2
Application Programming Interface

6 C Application Programming
Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

6.1 Working with Blobs

6.2 Working with Threads

6.2.1 Posix

6.2.2 Windows

13

7 C++ Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

7.1 Working with Blobs

7.2 Working with Threads

7.2.1 Posix

7.2.2 Windows

14

8 Perl Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

8.1 Background

15

9 PHP Application
Programming Interface

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

9.1 Background

16

10 Other Application
Programming Interfaces

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

10.1 Java

10.2 Python

10.3 ImageMagick Integration Project

17

19

Part 3
User’s Guide

11 Image Channels

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

11.1 Working with Image Channels

21

12 Image Painting

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

12.1 Image Painting

12.1.1 Paint Type

Color

Matte

12.1.2 Paint Method

Floodfill

Point

Replace

FillToBorder

Reset

12.1.3 Fuzz Factor

22

13 Color Profiles

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

13.1 Working with Color Profiles

23

14 Image Drawing

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

14.1 SVG

14.2 MVG

24

Part 4
Installation And Administration Guide

15 Installing from Binary

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

15.1 Downloading

15.1.1 web

15.1.2 ftp

15.2 Linux RPM

15.3 Windows

15.4 VMS

15.5 Unix

15.6 Other

27

16 Installing from Source

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

16.1 Downloading

16.1.1 FTP

16.1.2 CVS

16.2 Unix

16.2.1 Configure

16.2.2 Modules

16.3 Windows

16.3.1 Configure

16.3.2 Modules

16.4 Macintosh

16.5 VMS

28

17 Customizing
ImageMagick

Abstract Please start every chapter with a short summary of what the
reader may expect.

To start with we suggest that every heading is followed by at least a short passage
of text in order to avoid a simple listing of different hierarchies.

17.1 Image Depth

17.1.1 8-bit

17.1.2 16-bit

17.2 Image Cache

17.2.1 Persistent Cache

17.3 Delegates

17.3.1 Library Delegates

17.3.2 Delegates.mgk

17.4 magic.mgk

17.5 fontmap.mgk

29

31

Part 5
Reference Manual

18 Supported Image
Formats

Listed here are the various file formats supported by ImageMagick. The Format
is the image format identifier and is typically used as the image file extension
(e.g. image.png for the PNG image format). The mode shows the type of support:
r = read; w = write; + = multi-image files. So for example, a mode of rw+ means
ImageMagick can read, write, and save more than one image of a sequence to the
same blob or file. Finally the description tells what the image format is in case
you cannot tell directly from the format identifier (e.g. 8BIM is the Photoshop
resource format).

Table18.1: Supported Image Formats

Supported Image Formats

Format Mode Description
8BIM rw- Photoshop resource format
AFM r– TrueType font
APP1 rw- Photoshop resource format
ART r– PF1: 1st Publisher
AVI r– Audio/Visual Interleaved
AVS rw+ AVS X image
BIE rw- Joint Bi-level Image experts Group interchange format
BMP rw+ Microsoft Windows bitmap image
CAPTION *r+ Caption (requires separate size info)
CMYK rw- Raw cyan, magenta, yellow, and black samples

(8 or 16 bits, depending on the image depth)
CMYKA rw- Raw cyan, magenta, yellow, black, and matte samples

(8 or 16 bits, depending on the image depth)
CUT r– DR Hallo
DCM r– Digital Imaging and Communications in Medicine image

33

34 ImageMagick

Supported Image Formats (continued)

Format Mode Description
DCX rw+ ZSoft IBM PC multi-page Paintbrush
DIB rw+ Microsoft Windows bitmap image
DPS r– Display Postscript
DPX r– Digital Moving Picture Exchange
EPDF rw- Encapsulated Portable Document Format
EPI rw- Adobe Encapsulated PostScript Interchange format
EPS rw- Adobe Encapsulated PostScript
EPS2 -w- Adobe Level II Encapsulated PostScript
EPS3 -w- Adobe Level III Encapsulated PostScript
EPSF rw- Adobe Encapsulated PostScript
EPSI rw- Adobe Encapsulated PostScript Interchange format
EPT rw- Adobe Encapsulated PostScript with TIFF preview
FAX rw+ Group 3 FAX
FILE r– Uniform Resource Locator
FITS rw- Flexible Image Transport System
FPX rw- FlashPix Format
FTP r– Uniform Resource Locator
G3 rw- Group 3 FAX
GIF rw+ CompuServe graphics interchange format
GIF87 rw- CompuServe graphics interchange format (version 87a)
GRADIENT r– Gradual passing from one shade to another
GRANITE r– Granite texture
GRAY rw+ Raw gray samples (8 or 16 bits, depending on the

image depth)
H rw- Internal format
HDF rw+ Hierarchical Data Format
HISTOGRAM -w- Histogram of the image
HTM -w- Hypertext Markup Language and a client-side image map
HTML -w- Hypertext Markup Language and a client-side image map
HTTP r– Uniform Resource Locator
ICB rw+ Truevision Targa image
ICM rw- ICC Color Profile
ICO r– Microsoft icon
ICON r– Microsoft icon
IMPLICIT —
IPTC rw- IPTC Newsphoto
JBG rw+ Joint Bi-level Image experts Group interchange format
JBIG rw+ Joint Bi-level Image experts Group interchange format
JP2 rw- JPEG-2000 JP2 File Format Syntax
JPC rw- JPEG-2000 Code Stream Syntax
JPEG rw- Joint Photographic Experts Group JFIF format

18 Supported Image Formats 35

Supported Image Formats (continued)

Format Mode Description
JPG rw- Joint Photographic Experts Group JFIF format
LABEL r– Text image format
LOGO rw- ImageMagick Logo
M2V rw+ MPEG-2 Video Stream
MAP rw- Colormap intensities (8 or 16 bits, depending on

the image depth) and indices (8 or 16 bits, depending
on whether �����	��
���������).

MAT -w+ MATLAB image format
MATTE -w+ MATTE format
MIFF rw+ Magick image format
MNG rw+ Multiple-image Network Graphics
MONO rw- Bi-level bitmap in least-significant-byte first order
MPC rw- Magick Persistent Cache image format
MPEG rw+ MPEG-1 Video Stream
MPG rw+ MPEG-1 Video Stream
MPR r– Magick Persistent Registry
MTV rw+ MTV Raytracing image format
MVG rw- Magick Vector Graphics
NETSCAPE r– Netscape 216 color cube
NULL r– Constant image of uniform color
OTB rw- On-the-air bitmap
P7 rw+ Xv thumbnail format
PAL rw- 16bit/pixel interleaved YUV
PALM rw- PALM Pixmap
PBM rw+ Portable bitmap format (black and white)
PCD rw- Photo CD
PCDS rw- Photo CD
PCL -w- Page Control Language
PCT rw- Apple Macintosh QuickDraw/PICT
PCX rw- ZSoft IBM PC Paintbrush
PDB r– Pilot Image Format
PDF rw+ Portable Document Format
PFB r– TrueType font
PFM r– TrueType font
PGM rw+ Portable graymap format (gray scale)
PICON rw- Personal Icon
PICT rw- Apple Macintosh QuickDraw/PICT
PIX r– Alias/Wavefront RLE image format
PLASMA r– Plasma fractal image
PM rw- X Windows system pixmap (color)
PNG rw- Portable Network Graphics

36 ImageMagick

Supported Image Formats (continued)

Format Mode Description
PNM rw+ Portable anymap
PPM rw+ Portable pixmap format (color)
PREVIEW -w- Show a preview an image enhancement, effect, or f/x
PS rw+ Adobe PostScript
PS2 -w+ Adobe Level II PostScript
PS3 -w+ Adobe Level III PostScript
PSD rw- Adobe Photoshop bitmap
PTIF rw- Pyramid encoded TIFF
PWP r– Seattle Film Works
RAS rw+ SUN Rasterfile
RGB rw+ Raw red, green, and blue samples (8 or 16 bits,

depending on the image depth)
RGBA rw+ Raw red, green, blue, and matte samples (8 or 16

bits, depending on the image depth)
RLA r– Alias/Wavefront image
RLE r– Utah Run length encoded image
ROSE *rw- 70x46 Truecolor test image
SCT r– Scitex HandShake
SFW r– Seattle Film Works
SGI rw+ Irix RGB image
SHTML -w- Hypertext Markup Language and a client-side image map
STEGANO r– Steganographic image
SUN rw+ SUN Rasterfile
SVG rw+ Scalable Vector Gaphics
TEXT rw+ Raw text
TGA rw+ Truevision Targa image
TIF rw+ Tagged Image File Format
TIFF rw+ Tagged Image File Format
TILE r– Tile image with a texture
TIM r– PSX TIM
TTF r– TrueType font
TXT rw+ Raw text
UIL -w- X-Motif UIL table
UYVY rw- 16bit/pixel interleaved YUV
VDA rw+ Truevision Targa image
VICAR rw- VICAR rasterfile format
VID rw+ Visual Image Directory
VIFF rw+ Khoros Visualization image
VST rw+ Truevision Targa image
WBMP rw- Wireless Bitmap (level 0) image
WPG r– Word Perfect Graphics

18 Supported Image Formats 37

Supported Image Formats (continued)

Format Mode Description
X rw- X Image
XBM rw- X Windows system bitmap (black and white)
XC r– Constant image uniform color
XCF r– GIMP image
XML r– Scalable Vector Gaphics
XPM rw- X Windows system pixmap (color)
XV rw+ Khoros Visualization image
XWD rw- X Windows system window dump (color)
YUV rw- CCIR 601 4:1:1

Your installation might not support all of the formats in the list. To get an up-
to-date listing of the formats supported by your particular configuration, run
”convert -list format”.

19 Commandline options

This is a combined list of the commandline options used by the ImageMag-
ick utilities (animate, composite, convert, display, identify, import, mogrify and
montage).

-adjoin join images into a single multi-image file

By default, all images of an image sequence are stored in the same file. However,
some formats (e.g. JPEG) do not support more than one image and are saved to
separate files. Use +adjoin to force this behavior.

-affine � matrix � drawing transform matrix

-antialias remove pixel aliasing

-append append a set of images

This option creates a single image where the images in the original set are
stacked top-to-bottom. If they are not of the same width, any narrow images
will be expanded to fit using the background color. Use +append to stack im-
ages left-to-right. The set of images is terminated by the appearance of any op-
tion. If the -append option appears after all of the input images, all images are
appended.

-average average a set of images The set of images is terminated by the appearance
of any option. If the -average option appears after all of the input images, all
images are averaged.

-backdrop � color � display the image centered on a backdrop.

38

19 Commandline options 39

This backdrop covers the entire workstation screen and is useful for hiding other
X window activity while viewing the image. The color of the backdrop is speci-
fied as the background color. The color is specified using the format described in
the “Color Names” section of X(1). Refer to “X Resources” in the manual page
for display for details.

-background � color � the background color

The color is specified using the format described in the “Color Names” section
of X(1).

-blur � radius � x � sigma � blur the image with a gaussian operator

Blur with the given radius and standard deviation (sigma).

-border � width � x � height � surround the image with a border of color

See -geometry for details about the geometry specification.

-bordercolor � color � the border color

The color is specified using the format described in the “Color Names” section
of X(1).

-borderwidth � geometry � the border width

-box � color � set the color of the annotation bounding box

The color is specified using the format described in the “Color Names” section
of X(1).

See -draw for further details.

-cache � threshold � megabytes of memory available to the pixel cache

Image pixels are stored in memory until 80 megabytes of memory have been
consumed. Subsequent pixel operations are cached on disk. Operations to mem-
ory are significantly faster but if your computer does not have a sufficient amount
of free memory you may want to adjust this threshold value.

-channel � type � the type of channel

Choose from: Red, Green, Blue, Opacity, Cyan, Magenta, Yellow, or Black.

Use this option to extract a particular channel from the image. Matte, for exam-
ple, is useful for extracting the opacity values from an image.

40 ImageMagick

-charcoal � factor � simulate a charcoal drawing

-chop � width � x � height ��� +- ��� x offset ��� +- ��� y offset ��� % � remove pix-
els from the interior of an image

The width and height give the number of columns and rows to remove, and the
offsets give the location of the leftmost column and topmost row to remove.

The x offset normally specifies the leftmost column to remove. If the -gravity
option is present with NorthEast, East, or SouthEast gravity, it gives the distance
leftward from the right edge of the image to the rightmost column to remove.
Similarly, the y offset normally specifies the topmost row to remove, but if the -
gravity option is present with SouthWest, South, or SouthEast gravity, it specifies
the distance upward from the bottom edge of the image to the bottom row to
remove.

The -chop option removes entire rows and columns, and moves the remaining
corner blocks leftward and upward to close the gaps.

-clip apply the clipping path, if one is present

If a clipping path is present, it will be applied to subsequent operations.

For example, if you type the following command:

convert -clip -negate cockatoo.tif negated_cockatoo.tif

only the pixels within the clipping path are negated.

The -clip feature requires the XML library. If the XML library is not present,
the option is ignored.

-coalesce merge a sequence of images The set of images is terminated by the ap-
pearance of any option. If the -coalesce option appears after all of the input
images, all images are coalesced.

-colorize � value � colorize the image with the pen color

Specify the amount of colorization as a percentage. You can apply separate col-
orization values to the red, green, and blue channels of the image with a col-
orization value list delineated with slashes (e.g. 0/0/50).

-colormap � type � define the colormap type

Choose between shared or private.

This option only applies when the default X server visual is PseudoColor or
GRAYScale. Refer to -visual for more details. By default, a shared colormap

19 Commandline options 41

is allocated. The image shares colors with other X clients. Some image colors
could be approximated, therefore your image may look very different than in-
tended. Choose Private and the image colors appear exactly as they are defined.
However, other clients may go technicolor when the image colormap is installed.

-colors � value � preferred number of colors in the image

The actual number of colors in the image may be less than your request, but
never more. Note, this is a color reduction option. Images with less unique colors
than specified with this option will have any duplicate or unused colors removed.
Refer to quantize for more details.

Note, options -dither, -colorspace, and -treedepth affect the color reduction
algorithm.

-colorspace � value � the type of colorspace

Choices are: GRAY, OHTA, RGB, Transparent, XYZ, YCbCr, YIQ, YPbPr,
YUV, or CMYK.

Color reduction, by default, takes place in the RGB color space. Empirical ev-
idence suggests that distances in color spaces such as YUV or YIQ correspond
to perceptual color differences more closely than do distances in RGB space.
These color spaces may give better results when color reducing an image. Refer
to quantize for more details.

The Transparent color space behaves uniquely in that it preserves the matte
channel of the image if it exists.

The -colors or -monochrome option is required for this option to take effect.

-comment � string � annotate an image with a comment

Use this option to assign a specific comment to the image. You can include
the image filename, type, width, height, or other image attribute by embedding
special format characters:

%b file size
%c comment
%d directory
%e filename extention
%f filename
%h height
%i input filename
%k number of unique colors
%l label
%m magick
%n number of scenes

42 ImageMagick

%o output filename
%p page number
%q quantum depth
%s scene number
%t top of filename
%u unique temporary filename
%w width
%x x resolution
%y y resolution
%# signature
\n newline
\r carriage return

For example,

-comment "%m:%f %wx%h"

produces an image comment of MIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

If the first character of string is @, the image comment is read from a file titled
by the remaining characters in the string.

-compose � operator � the type of image composition [This option is not used by
convert but this section is included because it describes the composite operators
that are used by the -draw option of convert.]

By default, each of the composite image pixels are replaced by the corresponding
image tile pixel. You can choose an alternate composite operation:

Over
In
Out
Atop
Xor
Plus
Minus
Add
Subtract
Difference
Multiply
Bumpmap
Copy
CopyRed
CopyGreen
CopyBlue
CopyOpacity

19 Commandline options 43

How each operator behaves is described below.

Over
The result will be the union of the two image shapes, with opaque areas of
composite image obscuring image in the region of overlap.

In
The result is simply composite image cut by the shape of image. None of the
image data of image will be in the result.

Out
The resulting image is composite image with the shape of image cut out.

Atop
The result is the same shape as image image, with composite image obscur-
ing image where the image shapes overlap. Note this differs from over be-
cause the portion of composite image outside image’s shape does not appear
in the result.

Xor
The result is the image data from both composite image and image that is
outside the overlap region. The overlap region will be blank.

Plus
The result is just the sum of the image data. Output values are cropped to
255 (no overflow). This operation is independent of the matte channels.

Minus
The result of composite image - image, with underflow cropped to zero. The
matte channel is ignored (set to 255, full coverage).

Add
The result of composite image + image, with overflow wrapping around
(mod 256).

Subtract
The result of composite image - image, with underflow wrapping around
(mod 256). The add and subtract operators can be used to perform re-
versible transformations.

Difference
The result of abs(composite image - image). This is useful for comparing
two very similar images.

Multiply
The result of composite image * image. This is useful for the creation of
drop-shadows.

Bumpmap
The result image shaded by composite image.

Copy
The resulting image is image replaced with composite image. Here the matte
information is ignored.

CopyRed
The resulting image is the red layer in image replaced with the red layer in
composite image. The other layers are copied untouched.

44 ImageMagick

CopyGreen
The resulting image is the green layer in image replaced with the green layer
in composite image. The other layers are copied untouched.

CopyBlue
The resulting image is the blue layer in image replaced with the blue layer
in composite image. The other layers are copied untouched.

CopyOpacity
The resulting image is the matte layer in image replaced with the matte layer
in composite image. The other layers are copied untouched.

The image compositor requires a matte, or alpha channel in the image for some
operations. This extra channel usually defines a mask which represents a sort of a
cookie-cutter for the image. This is the case when matte is 255 (full coverage) for
pixels inside the shape, zero outside, and between zero and 255 on the boundary.
For certain operations, if image does not have a matte channel, it is initialized
with 0 for any pixel matching in color to pixel location (0,0), otherwise 255 (to
work properly borderwidth must be 0).

-compress � type � the type of image compression

Choices are: None, BZip, Fax, Group4, JPEG, Lossless, LZW, RLE or Zip.

Specify +compress to store the binary image in an uncompressed format. The
default is the compression type of the specified image file.

If LZW compression is specified but LZW compression has not been enabled,
the image data will be written in an uncompressed LZW format that can be read
by LZW decoders. This may result in larger-than-expected GIF files.

“Lossless” refers to lossless JPEG, which is only available if the JPEG library
has been patched to support it.

-contrast enhance or reduce the image contrast

This option enhances the intensity differences between the lighter and darker
elements of the image. Use -contrast to enhance the image or +contrast to
reduce the image contrast.

-crop � width � x � height ��� +- ��� x offset ��� +- ��� y offset ��� % � preferred size
and location of the cropped image

See -geometry for details about the geometry specification.

The width and height give the size of the image that remains after cropping, and
the offsets give the location of the top left corner of the cropped image with
respect to the original image. To specify the amount to be removed, use -shave
instead.

19 Commandline options 45

To specify a percentage width or height to be removed instead, append %. For
example to crop the image by ten percent (five percent on each side of the im-
age), use -crop 10%.

The x and y offsets specify the location of the upper left corner of the cropping
region measured downward and rightward with respect to the upper left corner of
the image. If the -gravity option is present with NorthEast, East, or SouthEast
gravity, it gives the distance leftward from the right edge of the image to the
right edge of the cropping region. Similarly, if the -gravity option is present
with SouthWest, South, or SouthEast gravity, the distance is measured upward
between the bottom edges.

Omit the x and y offset to generate one or more subimages of a uniform size.

-cycle � amount � displace image colormap by amount

Amount defines the number of positions each colormap entry is shifted.

-debug enable debug printout

-deconstruct break down an image sequence into constituent parts The sequence of
images is terminated by the appearance of any option. If the -deconstruct option
appears after all of the input images, all images are deconstructed.

-delay � 1/100ths of a second � display the next image after pausing

This option is useful for regulating the animation of image sequences Delay/100
seconds must expire before the display of the next image. The default is no delay
between each showing of the image sequence. The maximum delay is 65535.

You can specify a delay range (e.g. -delay 10-500) which sets the minimum and
maximum delay.

-density � width � x � height � vertical and horizontal resolution in pixels of the
image

This option specifies an image density when decoding a PostScript or Portable
Document page. The default is 72 dots per inch in the horizontal and vertical
direction. This option is used in concert with -page.

-depth � value � depth of the image

This is the number of bits in a color sample within a pixel. The only acceptable
values are 8 or 16. Use this option to specify the depth of raw images whose
depth is unknown such as GRAY, RGB, or CMYK, or to change the depth of
any image after it has been read.

46 ImageMagick

-descend obtain image by descending window hierarchy

-despeckle reduce the speckles within an image

-displace � horizontal scale � x � vertical scale � shift image pixels as defined
by a displacement map

With this option, composite image is used as a displacement map. Black, within
the displacement map, is a maximum positive displacement. White is a max-
imum negative displacement and middle gray is neutral. The displacement is
scaled to determine the pixel shift. By default, the displacement applies in both
the horizontal and vertical directions. However, if you specify mask, composite
image is the horizontal X displacement and mask the vertical Y displacement.

-display � host:display[.screen] � specifies the X server to contact

This option is used with convert for obtaining image or font from this X server.
See X(1).

-dispose � method � GIF disposal method

Here are the valid methods:

0 No disposal specified.
1 Do not dispose between frames.
2 Overwrite frame with background color from header.
3 Overwrite with previous frame.

-dissolve � percent � dissolve an image into another by the given percent

The opacity of the composite image is multiplied by the given percent, then it is
composited over the main image.

-dither apply Floyd/Steinberg error diffusion to the image

The basic strategy of dithering is to trade intensity resolution for spatial reso-
lution by averaging the intensities of several neighboring pixels. Images which
suffer from severe contouring when reducing colors can be improved with this
option.

The -colors or -monochrome option is required for this option to take effect.

Use +dither to turn off dithering and to render Postscript without text or graphic
aliasing.

19 Commandline options 47

-draw � string � annotate an image with one or more graphic primitives

Use this option to annotate an image with one or more graphic primitives. The
primitives include

point x,y
line x0,y0 x1,y1
rectangle x0,y0 x1,y1
roundRectangle x0,y0 w,h wc,hc
arc x0,y0 x1,y1 a0,a1
ellipse x0,y0 rx,ry a0,a1
circle x0,y0 x1,y1
polyline x0,y0 ... xn,yn
polygon x0,y0 ... xn,yn
bezier x0,y0 ... xn,yn
path path specification
color x0,y0 method
matte x0,y0 method
text x0,y0 string
image operator x0,y0 w,h filename

Point requires a single coordinate. Line requires a start and end coordinate,
while rectangle expects an upper left and lower right coordinate. roundRect-
angle has a center coordinate, a width and height, and the width and height of
the corners. Circle has a center coordinate and a coordinate for the outer edge.
Use Arc to circumscribe an arc within a rectangle. Arcs require a start and end
point as well as the degree of rotation (e.g. 130,30 200,100 45,90). Use Ellipse
to draw a partial ellipse centered at the given point with the x-axis and y-axis
radius and start and end of arc in degrees (e.g. 100,100 100,150 0,360). Finally,
polyline and polygon require three or more coordinates to define its boundaries.
Coordinates are integers separated by an optional comma. For example, to define
a circle centered at 100,100 that extends to 150,150 use:

-draw ’circle 100,100 150,150’

See Paths. Paths represent an outline of an object which is defined in terms of
moveto (set a new current point), lineto (draw a straight line), curveto (draw a
curve using a cubic bezier), arc (elliptical or circular arc) and closepath (close
the current shape by drawing a line to the last moveto) elements. Compound
paths (i.e., a path with subpaths, each consisting of a single moveto followed by
one or more line or curve operations) are possible to allow effects such as “donut
holes” in objects.

Use color to change the color of a pixel to the fill color (see -fill. Follow the
pixel coordinate with a method:

point

48 ImageMagick

replace
floodfill
filltoborder
reset

Consider the target pixel as that specified by your coordinate. The point method
recolors the target pixel. The replace method recolors any pixel that matches the
color of the target pixel. Floodfill recolors any pixel that matches the color of
the target pixel and is a neighbor, whereas filltoborder recolors any neighbor
pixel that is not the border color. Finally, reset recolors all pixels.

Use matte to the change the pixel matte value to transparent. Follow the pixel
coordinate with a method (see the color primitive for a description of meth-
ods). The point method changes the matte value of the target pixel. The replace
method changes the matte value of any pixel that matches the color of the target
pixel. Floodfill changes the matte value of any pixel that matches the color of
the target pixel and is a neighbor, whereas filltoborder changes the matte value
of any neighbor pixel that is not the border color (-bordercolor). Finally reset
changes the matte value of all pixels.

Use text to annotate an image with text. Follow the text coordinates with a string.
If the string has embedded spaces, enclose it in double quotes. Optionally you
can include the image filename, type, width, height, or other image attribute by
embedding special format character. See -comment for details.

For example,

-draw ’text 100,100 "%m:%f %wx%h"’

annotates the image with MIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

Use image to composite an image with another image. Follow the image key-
word with the composite operator, image location, image size, and filename:

-draw ’image Over 100,100 225,225 image.jpg’

See -compose for a description of the composite operators.

If the first character of string is @, the text is read from a file titled by the
remaining characters in the string.

You can set the primitive color, font, and font bounding box color with -fill, -
font, and -box respectively. Options are processed in command line order so be
sure to use these options before the -draw option.

-edge � order � detect edges within an image

Good order values are odd numbers from 3 to 31.

19 Commandline options 49

-emboss emboss an image

-enhance apply a digital filter to enhance a noisy image

-equalize perform histogram equalization to the image

-fill � color � color to use when filling a graphic primitive

The color is specified using the format described in the “Color Names” section
of X(1).

See -draw for further details.

-filter � type � use this type of filter when resizing an image

Use this option to affect the resizing operation of an image (see -geometry).
Choose from these filters:

Point
Box
Triangle
Hermite
Hanning
Hamming
Blackman
Gaussian
Quadratic
Cubic
Catrom
Mitchell
Lanczos
Bessel
Sinc

The default filter is Lanczos

-flatten flatten a sequence of images The sequence of images is terminated by the
appearance of any option. If the -flatten option appears after all of the input
images, all images are flattened.

-flip create a “mirror image”

reflect the scanlines in the vertical direction.

50 ImageMagick

-flop create a “mirror image”

reflect the scanlines in the horizontal direction.

-font � name � use this font when annotating the image with text

You can tag a font to specify whether it is a Postscript, Truetype, or OPTION1
font. For example,Arial.ttf is a Truetype font,ps:helvetica is Postscript,
and x:fixed is OPTION1.

-foreground � color � define the foreground color

The color is specified using the format described in the “Color Names” section
of X(1).

-format � type � the image format type

This option will convert any image to the image format you specify. See con-
vert(1) for a list of image format types supported by ImageMagick.

By default the file is written to its original name. However, if the filename exten-
sion matches a supported format, the extension is replaced with the image format
type specified with -format. For example, if you specify tiff as the format type
and the input image filename is image.gif , the output image filename becomes
image.tiff .

-format � string � output formatted image characteristics

Use this option to print information about the image in a format of your choos-
ing. You can include the image filename, type, width, height, or other image
attributes by embedding special format characters:

%b file size
%c comment
%d directory
%e filename extention
%f filename
%h height
%i input filename
%k number of unique colors
%l label
%m magick
%n number of scenes
%o output filename
%p page number
%q quantum depth

19 Commandline options 51

%s scene number
%t top of filename
%u unique temporary filename
%w width
%x x resolution
%y y resolution
%# signature
\n newline
\r carriage return

For example,

-format "%m:%f %wx%h"

displays MIFF:bird.miff 512x480 for an image titled bird.miff and whose
width is 512 and height is 480.

If the first character of string is @, the format is read from a file titled by the
remaining characters in the string.

-frame � width � x � height � + � outer bevel width � + � inner bevel width �
surround the image with an ornamental border

See -geometry for details about the geometry specification. The -frame option
is not affected by the -gravity option.

The color of the border is specified with the -mattecolor command line option.

-frame include the X window frame in the imported image

-fuzz � distance � % ��� colors within this distance are considered equal

A number of algorithms search for a target color. By default the color must be
exact. Use this option to match colors that are close to the target color in RGB
space. For example, if you want to automatically trim the edges of an image with
-trim but the image was scanned and the target background color may differ by
a small amount. This option can account for these differences.

The distance can be in absolute intensity units or, by appending “%”, as a per-
centage of the maximum possible intensity (255 or 65535).

-gamma � value � level of gamma correction

The same color image displayed on two different workstations may look differ-
ent due to differences in the display monitor. Use gamma correction to adjust for
this color difference. Reasonable values extend from 0.8 to 2.3.

52 ImageMagick

You can apply separate gamma values to the red, green, and blue channels of the
image with a gamma value list delineated with slashes (e.g., 1.7/2.3/1.2).

Use +gamma value to set the image gamma level without actually adjusting the
image pixels. This option is useful if the image is of a known gamma but not set
as an image attribute (e.g. PNG images).

-gaussian � radius � x � sigma � blur the image with a gaussian operator

Use the given radius and standard deviation (sigma).

-geometry � width � x � height ��� +- ��� x offset ��� +- ��� y offset ��� % ��� @ ��� ! �������������
preferred size and location of the Image window.

By default, the window size is the image size and the location is chosen by you
when it is mapped.

By default, the width and height are maximum values. That is, the image is ex-
panded or contracted to fit the width and height value while maintaining the as-
pect ratio of the image. Append an exclamation point to the geometry to force the
image size to exactly the size you specify. For example, if you specify 640x480!
the image width is set to 640 pixels and height to 480.

If only the width is specified, the width assumes the value and the height is
chosen to maintain the aspect ratio of the image. Similarly, if only the height is
specified (e.g., -geometry x256), the width is chosen to maintain the aspect
ratio.

To specify a percentage width or height instead, append %. The image size is
multiplied by the width and height percentages to obtain the final image dimen-
sions. To increase the size of an image, use a value greater than 100 (e.g. 125%).
To decrease an image’s size, use a percentage less than 100.

Use @ to specify the maximum area in pixels of an image.

Use � to change the dimensions of the image only if its size exceeds the ge-
ometry specification. � resizes the image only if its dimensions is less than the
geometry specification. For example, if you specify ’640x480 � ’ and the im-
age size is 512x512, the image size does not change. However, if the image is
1024x1024, it is resized to 640x480. Enclose the geometry specification in quo-
tation marks to prevent the � or � from being interpreted by your shell as a file
redirection.

When used with animate and display, offsets are handled in the same manner
as in X(1) and the -gravity option is not used. If the x offset is negative, the
offset is measured leftward from the right edge of the screen to the right edge of
the image being displayed. Similarly, negative y offset is measured between the
bottom edges.

When used as a composite option, -geometry gives the dimensions of the image
and its location with respect to the composite image. If the -gravity option is

19 Commandline options 53

present with NorthEast, East, or SouthEast gravity, the x offset represents the
distance from the right edge of the image to the right edge of the composite im-
age. Similarly, if the -gravity option is present with SouthWest, South, or South-
East gravity, the y offset is measured between the bottom edges. Accordingly, a
positive offset will never point in the direction outside of the image.

When used as a convert, import or mogrify option, -geometry specifies the size
of the output image and the offsets, if present, are ignored.

When used as a montage option, -geometry specifies the image size and border
size for each tile; default is 256x256+0+0. Negative offsets (border dimensions)
are meaningless. The -gravity option affects the placement of the image within
the tile; the default gravity for this purpose is Center.

-gravity � type � direction primitive gravitates to when annotating the image.

Choices are: NorthWest, North, NorthEast, West, Center, East, SouthWest, South,
SouthEast.

The direction you choose specifies where to position the text or other graphic
primitive when annotating the image. For example Center gravity forces the text
to be centered within the image. By default, the image gravity is NorthWest. See
-draw for more details about graphic primitives.

The -gravity option is also used in concert with the -geometry option and other
options that take � geometry � as a parameter, such as the -crop option. See
-geometry for details of how the -gravity option interacts with the � x offset �
and � y offset � parameters of a geometry specification.

When used as an option to composite, -gravity gives the direction that the image
gravitates within the composite.

When used as an option to montage, -gravity gives the direction that an image
gravitates within a tile. The default gravity is Center for this purpose.

-help print usage instructions

-iconGeometry � geometry � specify the icon geometry

Offsets, if present in the geometry specification, are handled in the same manner
as the -geometry option, using X11 style to handle negative offsets.

-iconic iconic animation

-immutable make image immutable

-implode � factor � implode image pixels about the center

54 ImageMagick

-intent � type � use this type of rendering intent when managing the image color

Use this option to affect the the color management operation of an image (see
-profile). Choose from these intents: Absolute, Perceptual, Relative, Satura-
tion

The default intent is undefined.

-interlace � type � the type of interlacing scheme

Choices are: None, Line, Plane, or Partition. The default is None.

This option is used to specify the type of interlacing scheme for raw image for-
mats such as RGB or YUV. None means do not interlace (RGBRGBRGBRG-
BRGBRGB...), Line uses scanline interlacing (RRR...GGG...BBB...RRR...GGG...BBB...),
and Plane uses plane interlacing (RRRRRR...GGGGGG...BBBBBB...). Parti-
tion is like plane except the different planes are saved to individual files (e.g.
image.R, image.G, and image.B).

Use Line or Plane to create an interlaced PNG or GIF or progressive JPEG
image.

-label � name � assign a label to an image

Use this option to assign a specific label to the image. Optionally you can include
the image filename, type, width, height, or other image attribute by embedding
special format character. See -comment for details.

For example,

-label "%m:%f %wx%h"

produces an image label of MIFF:bird.miff 512x480 for an image titled bird.miff
and whose width is 512 and height is 480.

If the first character of string is @, the image label is read from a file titled by
the remaining characters in the string.

When converting to PostScript, use this option to specify a header string to print
above the image. Specify the label font with -font.

-level � value � adjust the level of image contrast

Give three point values delineated with commas: black, mid, and white (e.g.
10,1.0,65000). The white and black points range from 0 to MaxRGB and mid
ranges from 0 to 10.

-linewidth the line width for subsequent draw operations

19 Commandline options 55

-list � type � the type of list

Choices are: Delegate, Format, Magic, Module, or Type.

This option lists entries from the ImageMagick configuration files.

-loop � iterations � add Netscape loop extension to your GIF animation

A value other than zero forces the animation to repeat itself up to iterations
times.

-magnify � factor � magnify the image

-map � filename � choose a particular set of colors from this image [convert or
mogrify]

By default, color reduction chooses an optimal set of colors that best represent
the original image. Alternatively, you can choose a particular set of colors from
an image file with this option. Use +map to reduce all images in the image
sequence that follows to a single optimal set of colors that best represent all the
images. The sequence of images is terminated by the appearance of any option.
If the +map option appears after all of the input images, all images are mapped.

-map � type � display image using this type. [animate or display]

Choose from these Standard Colormap types:

best
default
gray
red
green
blue

The X server must support the Standard Colormap you choose, otherwise an
error occurs. Use list as the type and display searches the list of colormap types
in top-to-bottom order until one is located. See xstdcmap(1) for one way of
creating Standard Colormaps.

-mask � filename � Specify a clipping mask

The image read from the file is used as a clipping mask. It must have the same
dimensions as the image being masked.

If the mask image contains an opacity channel, the opacity of each pixel is used
to define the mask. Otherwise, the intensity (gray level) of each pixel is used.

56 ImageMagick

Use +mask to remove the clipping mask.

It is not necessary to use -clip to activate the mask; -clip is implied by -mask.

-matte store matte channel if the image has one

If the image does not have a matte channel, create an opaque one.

Use +matte to ignore the matte channel and to avoid writing a matte channel in
the output file.

-mattecolor � color � specify the matte color

The color is specified using the format described in the “Color Names” section
of X(1).

-median � order � apply a median filter to the image

Good order values are odd numbers from 3 to 31

-mode � value � mode of operation

-modulate � value � vary the brightness, saturation, and hue of an image

Specify the percent change in brightness, the color saturation, and the hue sepa-
rated by commas. For example, to increase the color brightness by 20% and de-
crease the color saturation by 10% and leave the hue unchanged, use: -modulate
120,90.

-monochrome transform the image to black and white

-morph � frames � morphs an image sequence

Both the image pixels and size are linearly interpolated to give the appearance
of a meta-morphosis from one image to the next.

The sequence of images is terminated by the appearance of any option. If the
-morph option appears after all of the input images, all images are morphed.

-mosaic create a mosaic from an image sequence

The -page option is used to locate the images within the mosaic. The sequence
of images is terminated by the appearance of any option. If the -mosaic option
appears after all of the input images, all images are included in the mosaic.

19 Commandline options 57

-name name an image

-negate replace every pixel with its complementary color

The red, green, and blue intensities of an image are negated. White becomes
black, yellow becomes blue, etc. Use +negate to only negate the grayscale pixels
of the image.

-noise � value � add or reduce noise in an image

The principal function of noise peak elimination filter is to smooth the objects
within an image without losing edge information and without creating undesired
structures. The central idea of the algorithm is to replace a pixel with its next
neighbor in value within a pixel window, if this pixel has been found to be noise.
A pixel is defined as noise if and only if this pixel is a maximum or minimum
within the pixel window.

Use order to specify the width of the neighborhood.

Use +noise followed by a noise type to add noise to an image. Choose from
these noise types:

Uniform
Gaussian
Multiplicative
Impulse
Laplacian
Poisson

-noop NOOP (no option) The -noop option can be used to terminate a group of
images and reset all options to their default values, when no other option is
desired.

-normalize transform image to span the full range of color values

This is a contrast enhancement technique.

-opaque � color � change this color to the pen color within the image

The color is specified using the format described in the “Color Names” section
of X(1).

See -fill for more details.

58 ImageMagick

-page � width � x � height ��� +- ��� x offset ��� +- ��� y offset ��� % ��� ! �������������
size and location of an image canvas

Use this option to specify the dimensions of the PostScript page in dots per inch
or a TEXT page in pixels. The choices for a Postscript page are:

11x17 792 1224
Ledger 1224 792
Legal 612 1008
Letter 612 792
LetterSmall 612 792
ArchE 2592 3456
ArchD 1728 2592
ArchC 1296 1728
ArchB 864 1296
ArchA 648 864
A0 2380 3368
A1 1684 2380
A2 1190 1684
A3 842 1190
A4 595 842
A4Small 595 842
A5 421 595
A6 297 421
A7 210 297
A8 148 210
A9 105 148
A10 74 105
B0 2836 4008
B1 2004 2836
B2 1418 2004
B3 1002 1418
B4 709 1002
B5 501 709
C0 2600 3677
C1 1837 2600
C2 1298 1837
C3 918 1298
C4 649 918
C5 459 649
C6 323 459
Flsa 612 936
Flse 612 936
HalfLetter 396 612

For convenience you can specify the page size by media (e.g. A4, Ledger, etc.).
Otherwise, -page behaves much like -geometry (e.g.-page letter+43+43 �).

19 Commandline options 59

To position a GIF image, use -page � +- ��� x offset ��� +- ��� y offset � (e.g. -page
+100+200).

For a Postscript page, the image is sized as in -geometry and positioned relative
to the lower left hand corner of the page by � +- ��� xoffset ��� +- ��� y offset � .
Use -page 612x792 � , for example, to center the image within the page. If
the image size exceeds the Postscript page, it is reduced to fit the page. The
default gravity for the -page option is NorthWest, i.e., positive x and y offset are
measured rightward and downward from the top left corner of the page, unless
the -gravity option is present with a value other than NorthWest.

The default page dimensions for a TEXT image is 612x792.

This option is used in concert with -density.

-paint � radius � simulate an oil painting

Each pixel is replaced by the most frequent color in a circular neighborhood
whose width is specified with radius.

-pause � seconds � pause between animation loops [animate]

Pause for the specified number of seconds before repeating the animation.

-pause � seconds � pause between snapshots [import]

Pause for the specified number of seconds before taking the next snapshot.

-pen � color � specify the pen color for drawing operations

The color is specified using the format described in the “Color Names” section
of X(1).

-ping efficiently determine image characteristics

-pointsize � value � pointsize of the Postscript, OPTION1, or TrueType font

-preview � type � image preview type

Use this option to affect the preview operation of an image (e.g. convert
-preview Gamma Preview:gamma.png). Choose from these previews:

Rotate
Shear

60 ImageMagick

Roll
Hue
Saturation
Brightness
Gamma
Spiff
Dull
Grayscale
Quantize
Despeckle
ReduceNoise
Add Noise
Sharpen
Blur
Threshold
EdgeDetect
Spread
Shade
Raise
Segment
Solarize
Swirl
Implode
Wave
OilPaint
CharcoalDrawing
JPEG

The default preview is JPEG.

-process � command � process a sequence of images The sequence of images is
terminated by the appearance of any option. If the -process option appears after
all of the input images, all images are processed.

-profile � filename � add ICM, IPTC, or generic profile to image

-profile filename adds an ICM (ICC color management), IPTC (newswire
information), or a generic profile to the image.

Use +profile icm, +profile iptc, or +profile profile name
to remove the respective profile. Use identify -verbose to find out what
profiles are in the image file. Use +profile "*" to remove all profiles.

-quality � value � JPEG/MIFF/PNG compression level

19 Commandline options 61

For the JPEG image format, quality is 0 (worst) to 100 (best). The default quality
is 75.

Quality for the MIFF and PNG image format sets the amount of image compres-
sion (quality / 10) and filter-type (quality % 10). Compression quality values
range from 0 (worst) to 100 (best). If filter-type is 4 or less, the specified filter-
type is used for all scanlines:

0: none
1: sub
2: up
3: average
4: Paeth

If filter-type is 5, adaptive filtering is used when quality is greater than 50 and
the image does not have a color map, otherwise no filtering is used.

If filter-type is 6 or more, adaptive filtering with minimum-sum-of-absolute-
values is used.

The default is quality is 75. Which means nearly the best compression with
adaptive filtering.

For further information, see the PNG specification.

-raise � width � x � height � lighten or darken image edges

This will create a 3-D effect. See -geometry for details details about the geom-
etry specification. Offsets are not used.

Use -raise to create a raised effect, otherwise use +raise.

-region � width � x � height ��� +- ��� x offset ��� +- ��� y offset � apply options
to a portion of the image

Negative offsets are treated in the same manner as in -crop.

-remote perform a remote operation

The only command recognized at this time is the name of an image file to load.

-resize � width � x � height ��� +- ��� x offset ��� +- ��� y offset ��� % ��� @ ��� ! �������������
resize and locate an image

This is an alias for the -geometry option and it behaves in the same manner. If
the -filter option precedes the -resize option, the specified filter is used.

There are some exceptions:

62 ImageMagick

When used as a composite option, -resize conveys the preferred size and location
of the output image, while -geometry conveys the size and placement of the
composite image within the main image.

When used as a montage option, -resize conveys the preferred size and location
of the montage, while -geometry conveys information about the tiles.

-roll � +- ��� x offset ��� +- ��� y offset � roll an image vertically or horizontally

See -geometry for details the geometry specification. The offsets are not affected
by the -gravity option.

A negative x offset rolls the image left-to-right. A negative y offset rolls the image
top-to-bottom.

-rotate � degrees ������������� apply Paeth image rotation to the image

Use � to rotate the image only if its width exceeds the height. � rotates the im-
age only if its width is less than the height. For example, if you specify -rotate
"-90 � " and the image size is 480x640, the image is not rotated. However, if
the image is 640x480, it is rotated by -90 degrees. If you use � or � , enclose it
in quotation marks to prevent it from being misinterpreted as a file redirection.

Empty triangles left over from rotating the image are filled with the color defined
as background (class backgroundColor). See X(1) for details.

-sample � geometry � scale image with pixel sampling

See -geometry for details about the geometry specification. -sample ignores the
-filter selection if the -filter option is present. Offsets, if present in the geometry
string, are ignored, and the -gravity option has no effect.

-scale � geometry � scale the image.

See -geometry for details about the geometry specification. -scale uses a sim-
pler, faster algorithm, and it ignores the -filter selection if the -filter option is
present. Offsets, if present in the geometry string, are ignored, and the -gravity
option has no effect.

-scene � value � set scene number

This option sets the scene number of an image or the first image in an image
sequence.

-scenes � value-value � range of image scene numbers to read

19 Commandline options 63

Each image in the range is read with the filename followed by a period (.) and the
decimal scene number. You can change this behavior by embedding a %0Nd,
%0No, or %0Nx printf format specification in the file name. For example,

montage -scenes 5-7 image.miff

makes a montage of files image.miff.5, image.miff.6, and image.miff.7, and

animate -scenes 0-12 image%02d.miff

animates files image00.miff, image01.miff, through image12.miff.

-snaps � value � number of screen snapshots

Use this option to grab more than one image from the X server screen, to create
an animation sequence.

-screen specify the screen to capture

This option indicates that the GetImage request used to obtain the image should
be done on the root window, rather than directly on the specified window. In this
way, you can obtain pieces of other windows that overlap the specified window,
and more importantly, you can capture menus or other popups that are indepen-
dent windows but appear over the specified window.

-seed � value � pseudo-random number generator seed value

-segment � cluster threshold � x � smoothing threshold � segment an im-
age

Segment an image by analyzing the histograms of the color components and
identifying units that are homogeneous with the fuzzy c-means technique.

Specify cluster threshold as the number of pixels in each cluster must exceed
the the cluster threshold to be considered valid. Smoothing threshold eliminates
noise in the second derivative of the histogram. As the value is increased, you
can expect a smoother second derivative. The default is 1.5. See “Image Seg-
mentation” in the manual page for display for details.

-shade � azimuth � x � elevation � shade the image using a distant light source

Specify azimuth and elevation as the position of the light source. Use +shade to
return the shading results as a grayscale image.

-shadow � radius � x � sigma � shadow the montage

64 ImageMagick

-shared memory use shared memory

This option specifies whether the utility should attempt use shared memory for
pixmaps. ImageMagick must be compiled with shared memory support, and the
display must support the MIT-SHM extension. Otherwise, this option is ignored.
The default is True.

-sharpen � radius � x � sigma � sharpen the image

Use a gaussian operator of the given radius and standard deviation (sigma).

-shave � width � x � height � shave pixels from the image edges

Specify the width of the region to be removed from both sides of the image and
the height of the regions to be removed from top and bottom.

-shear � x degrees � x � y degrees � shear the image along the X or Y axis

Use the specified positive or negative shear angle.

Shearing slides one edge of an image along the X or Y axis, creating a parallelo-
gram. An X direction shear slides an edge along the X axis, while a Y direction
shear slides an edge along the Y axis. The amount of the shear is controlled by a
shear angle. For X direction shears, x degrees is measured relative to the Y axis,
and similarly, for Y direction shears y degrees is measured relative to the X axis.

Empty triangles left over from shearing the image are filled with the color de-
fined as background (class backgroundColor). See X(1) for details.

-silent operate silently

-size � width � x � height ��� +offset � width and height of the image

Use this option to specify the width and height of raw images whose dimensions
are unknown such as GRAY, RGB, or CMYK. In addition to width and height,
use -size with an offset to skip any header information in the image or tell the
number of colors in a MAP image file, (e.g. -size 640x512+256).

For Photo CD images, choose from these sizes:

192x128
384x256
768x512
1536x1024
3072x2048

Finally, use this option to choose a particular resolution layer of a JBIG or JPEG
image (e.g. -size 1024x768).

19 Commandline options 65

-solarize � factor � negate all pixels above the threshold level

Specify factor as the percent threshold of the intensity (0 - 99.9%).

This option produces a solarization effect seen when exposing a photographic
film to light during the development process.

-spread � amount � displace image pixels by a random amount

Amount defines the size of the neighborhood around each pixel to choose a can-
didate pixel to swap.

-stegano � offset � hide watermark within an image

Use an offset to start the image hiding some number of pixels from the be-
ginning of the image. Note this offset and the image size. You will need this
information to recover the steganographic image (e.g. display -size 320x256+35
stegano:image.png).

-stereo composite two images to create a stereo anaglyph

The left side of the stereo pair is saved as the red channel of the output im-
age. The right side is saved as the green channel. Red-green stereo glasses are
required to properly view the stereo image.

-stroke � color � color to use when stroking a graphic primitive

The color is specified using the format described in the “Color Names” section
of X(1).

See -draw for further details.

-strokewidth � value � set the stroke width

See -draw for further details.

-swirl � degrees � swirl image pixels about the center

Degrees defines the tightness of the swirl.

-text font � name � font for writing fixed-width text

Specifies the name of the preferred font to use in fixed (typewriter style) format-
ted text. The default is 14 point Courier.

You can tag a font to specify whether it is a Postscript, Truetype, or OPTION1
font. For example, Courier.ttf is a Truetype font and x:fixed is OP-
TION1.

66 ImageMagick

-texture � filename � name of texture to tile onto the image background

-threshold � value � threshold the image

Create a bi-level image such that any pixel intensity that is equal or exceeds the
threshold is reassigned the maximum intensity otherwise the minimum intensity.

-tile � filename � tile image when filling a graphic primitive

-tile � geometry � layout of images

-title � string � assign a title to the displayed image

Use this option to assign a specific title to the image. This is assigned to the
image window and is typically displayed in the window title bar. Optionally you
can include the image filename, type, width, height, or other image attribute by
embedding special format characters:

%b file size
%c comment
%d directory
%e filename extention
%f filename
%h height
%i input filename
%k number of unique colors
%l label
%m magick
%n number of scenes
%o output filename
%p page number
%q quantum depth
%s scene number
%t top of filename
%u unique temporary filename
%w width
%x x resolution
%y y resolution
%# signature
\n newline
\r carriage return

For example,

19 Commandline options 67

-title "%m:%f %wx%h"

produces an image title of MIFF:bird.miff 512x480 for an image titled
bird.miff and whose width is 512 and height is 480.

-transparent � color � make this color transparent within the image

The color is specified using the format described in the “Color Names” section
of X(1).

-treedepth � value � tree depth for the color reduction algorithm

Normally, this integer value is zero or one. A zero or one tells display to choose
an optimal tree depth for the color reduction algorithm

An optimal depth generally allows the best representation of the source image
with the fastest computational speed and the least amount of memory. However,
the default depth is inappropriate for some images. To assure the best represen-
tation, try values between 2 and 8 for this parameter. Refer to quantize for more
details.

The -colors or -monochrome option is required for this option to take effect.

-trim trim an image

This option removes any edges that are exactly the same color as the corner
pixels. Use -fuzz to make -trim remove edges that are nearly the same color as
the corner pixels.

-type � type � the image type

Choose from: Bilevel, Grayscale, Palette, PaletteMatte, TrueColor, TrueCol-
orMatte, ColorSeparation, ColorSeparationMatte, or Optimize.

-update � seconds � detect when image file is modified and redisplay.

Suppose that while you are displaying an image the file that is currently dis-
played is over-written. display will automatically detect that the input file has
been changed and update the displayed image accordingly.

-units � type � the type of image resolution

Choose from: Undefined, PixelsPerInch, or PixelsPerCentimeter.

68 ImageMagick

-unsharp � radius � x � sigma � sharpen the image with an unsharp mask opera-
tor

Use the given radius and standard deviation (sigma).

-use pixmap use the pixmap

-verbose print detailed information about the image

This information is printed: image scene number; image name; image size; the
image class (DirectClass or PseudoClass); the total number of unique colors;
and the number of seconds to read and transform the image. Refer to miff for a
description of the image class.

If -colors is also specified, the total unique colors in the image and color reduc-
tion error values are printed. Refer to quantize for a description of these values.

-view � string � FlashPix viewing parameters

-visual � type � animate images using this X visual type

Choose from these visual classes:

StaticGray
GrayScale
StaticColor
PseudoColor
TrueColor
DirectColor
default
visual id

The X server must support the visual you choose, otherwise an error occurs. If
a visual is not specified, the visual class that can display the most simultaneous
colors on the default screen is chosen.

-watermark � brightness � x � saturation � percent brightness and saturation of
a watermark

-wave � amplitude � x � wavelength � alter an image along a sine wave

Specify amplitude and wavelength to effect the characteristics of the wave.

19 Commandline options 69

-window � id � make image the background of a window

id can be a window id or name. Specify root to select X’s root window as the
target window.

By default the image is tiled onto the background of the target window. If back-
drop or -geometry are specified, the image is surrounded by the background
color. Refer to X RESOURCES for details.

The image will not display on the root window if the image has more unique col-
ors than the target window colormap allows. Use -colors to reduce the number
of colors.

-window group specify the window group

-write � filename � write an image sequence [convert, composite]

The image sequence following the -write filenameoption is written out, and then
processing continues with the same image in its current state if there are addi-
tional options. To restore the image to its original state after writing it, use the
+write filename option.

-write write the image to a file [display]

If file already exists, you will be prompted as to whether it should be overwritten.

By default, the image is written in the format that it was read in as. To spec-
ify a particular image format, prefix file with the image type and a colon (e.g.,
ps:image) or specify the image type as the filename suffix (e.g., image.ps). See
convert(1) for a list of valid image formats. Specify file as - for standard out-
put. If file has the extension .Z or .gz, the file size is compressed using with
compress or gzip respectively. Precede the image file name with — to pipe to
a system command. If file already exists, you will be prompted as to whether it
should be overwritten. Use -compress to specify the type of image compression.

The equivalent X resource for this option is writeFilename (class WriteFile-
name). See “X Resources” in the manual page for display for details.

20 API Structures and
Enumerations

20.1 API Structures

AffineMatrix The members of the AffineMatrix structure are shown in the following
table:

Table20.1: Matrix Structure

Matrix Structure

Member Type Description
sx double x scale.
sy double y scale.
rx double x rotate.
ry double y rotate.
tx double x translate.
ty double y translate.

DrawInfo The DrawInfo structure is used to support annotating an image using draw-
ing commands.

The members of the DrawInfo structure are shown in the following table. The
structure is initialized to reasonable defaults by first initializing the equivalent
members of ImageInfo, and then initializing the entire structure using GetDraw-
Info().

70

20 API Structures and Enumerations 71

Table20.2: DrawInfo Structure

DrawInfo Structure

Member Type Description
affine AffineMatrix Coordinate transformation (rotation, scaling, and translation).
border color PixelPacket Border color.
box PixelPacket Text solid background color.
decorate DecorationType Text decoration type.
density char * Text rendering density in DPI (effects scaling font according to

pointsize). E.g. “72x72”.
fill PixelPacket Object internal fill (within outline) color.
font char * Font to use when rendering text.
gravity GravityType Text placement preference (e.g. NorthWestGravity).
linewidth double Stroke (outline) drawing width in pixels.
pointsize double Font size (also see density).
primitive char * Space or new-line delimited list of text drawing primitives (e.g

”text 100, 100 Cockatoo”). See the table Drawing Primitives for
the available drawing primitives.

stroke PixelPacket Object stroke (outline) color.
stroke antialias unsigned int Set to True (non-zero) to obtain anti-aliased stroke rendering.
text antialias unsigned int Set to True (non-zero) to obtain anti-aliased text rendering.
tile Image * Image texture to draw with. Use an image containing a single

color (e.g. a 1x1 image) to draw in a solid color.

ExceptionInfo The members of the ExceptionInfo structure are shown in the fol-
lowing table:

Table20.3: ImageInfo Structure

ExceptionInfo Structure

Member Type Description
severity ExceptionType warning or error severity.
reason char * warning or error message.
description char * warning or error description.

72 ImageMagick

Image The Image structure represents an ImageMagick image. It is initially allocated
by AllocateImage() and deallocated by DestroyImage(). The functions Read-
Image(), ReadImages(), BlobToImage() and CreateImage() return a new image.
Use CloneImage() to copy an image. An image consists of a structure containing
image attributes as well as the image pixels.

The image pixels are represented by the structure PixelPacket and are cached
in-memory, or on disk, depending on the cache threshold setting. This cache
is known as the “pixel cache”. Pixels in the cache may not be edited directly.
They must first be made visible from the cache via a pixel view. A pixel view
is a rectangular view of the pixels as defined by a starting coordinate, and a
number of rows and columns. When considering the varying abilities of multiple
platforms, the most reliably efficient pixel view is comprized of part, or all, of
one image row.

There are three means of accessing pixel views. When using the default view,
the pixels are made visible and accessable by using the AcquireImagePixels()
method which provides access to a specified region of the image. If you intend
to change any of the pixel values, use GetImagePixels(). After the view has been
updated, the pixels may be saved back to the cache in their original positions via
SyncImagePixels(). In order to create an image with new contents, or to blindly
overwrite existing contents, the method SetImagePixels() is used to reserve a
pixel view corresponding to a region in the pixel cache. Once the pixel view
has been updated, it may be written to the cache via SyncImagePixels(). The
function GetIndexes() provides access to the image colormap, represented as an
array of type IndexPacket.

A more flexible interface to the image pixels is via the CacheView interface.
This interface supports multiple pixel cache views (limited by the number of
image rows), each of which are identified by a handle (of type ViewInfo*). Use
OpenCacheView() to obtain a new cache view, CloseCacheView() to discard a
cache view, GetCacheView() to access an existing pixel region, SetCacheView()
to define a new pixel region, and SyncCacheView() to save the updated pixel
region. The function GetCacheViewIndexes() provides access to the colormap
indexes associated with the pixel view.

When writing encoders and decoders for new image formats, it is convenient
to have a high-level interface available which supports converting between ex-
ternal pixel representations and ImageMagick’s own representation. Pixel com-
ponents (red, green, blue, opacity, RGB, or RGBA) may be transferred from
a user-supplied buffer into the default view by using PushImagePixels(). Pixel
components may be transferred from the default view into a user-supplied buffer
by using PopImagePixels(). Use of this high-level interface helps protect image
coders from changes to ImageMagick’s pixel representation and simplifies the
implementation.

The members of the Image structure are shown in the following table:

20 API Structures and Enumerations 73

Table20.4: ImageInfo Structure

ImageInfo Structure

Member Type Description
attributes ImageAttribute Image attribute list. Consists of a doubly-linked-list of ImageAt-

tribute structures, each of which has an associated key and value.
Access/update list via SetImageAttribute() and GetImageAt-
tribute(). Key-strings used by ImageMagick include “Comment”
(image comment) , “Label” (image label), and “Signature” (im-
age signature).

background color PixelPacket Image background color
blur double Blur factor to apply to the image when zooming
border color PixelPacket Image border color
chromaticity ChromaticityInfo Red, green, blue, and white-point chromaticity values.
color class ClassType Image storage class. If DirectClass then the image packets con-

tain valid RGB or CMYK colors. If PseudoClass then the image
has a colormap referenced by pixel’s index member.

color profile ProfileInfo ICC color profile. Specifications are available from the Interna-
tional Color Consortium for the format of ICC color profiles.

colormap PixelPacket PseudoColor palette array.
colors unsigned long The desired number of colors. Used by QuantizeImage().
colorspace ColorspaceType Image pixel interpretation.If the colorspace is RGB the pixels

are red, green, blue. If matte is true, then red, green, blue, and
index. If it is CMYK, the pixels are cyan, yellow, magenta, black.
Otherwise the colorspace is ignored.

columns unsigned long Image width
comments char * Image comments
compression CompressionType Image compression type. The default is the compression type of

the specified image file.
delay unsigned long Time in 1/100ths of a second (0 to 65535) which must expire

before displaying the next image in an animated sequence. This
option is useful for regulating the animation of a sequence of
GIF images within Netscape.

depth unsigned long Image depth (8 or 16).
directory char * Tile names from within an image montage. Only valid after call-

ing MontageImages() or reading a MIFF file which contains a
directory.

dispose unsigned int GIF disposal method. This option is used to control how succes-
sive frames are rendered (how the preceding frame is disposed
of) when creating a GIF animation.

exception ExceptionInfo Record of any error which occurred when updating image.

74 ImageMagick

ImageInfo Structure (continued)

Member Type Description
file FILE * Stdio stream to read image from or write image to. If set, Im-

ageMagick will read from or write to the stream rather than
opening a file. Used by ReadImage() and WriteImage(). The
stream is closed when the operation completes.

filename char[MaxTextExtent] Image file name to read or write.
filesize long int Number of bytes of the encoded file.
filter FilterTypes Filter to use when resizing image. The reduction filter employed

has a significant effect on the time required to resize an image
and the resulting quality. The default filter is Lanczos which has
been shown to produce high quality results when reducing most
images.

fuzz int Colors within this distance are considered equal. A number of
algorithms search for a target color. By default the color must be
exact. Use this option to match colors that are close to the target
color in RGB space.

gamma double Gamma level of the image. The same color image displayed on
two different workstations may look different due to differences
in the display monitor. Use gamma correction to adjust for this
color difference.

geometry char * Preferred size and location of the image when encoding. Positive
offsets are measured downward and to the right of the upper left
corner. Negative offsets are measured leftward or upward from
the right edge or bottom edge.

interlace InterlaceType The type of interlacing scheme (default NoInterlace). This op-
tion is used to specify the type of interlacing scheme for raw
image formats such as RGB or YUV. NoInterlace means do not
interlace, LineInterlace uses scanline interlacing, and PlaneInter-
lace uses plane interlacing. PartitionInterlace is like PlaneInter-
lace except the different planes are saved to individual files (e.g.
image.R, image.G, and image.B). Use LineInterlace or PlaneIn-
terlace to create an interlaced GIF or progressive JPEG image.

iptc profile ProfileInfo IPTC profile. Specifications are available from the International
Press Telecommunications Council for IPTC profiles.

iterations unsigned long Number of iterations to loop an animation (e.g. Netscape loop
extension) for.

list struct Image * Undo image list (used only by ‘display’)
magick char[MaxTextExtent] Image encoding format (e.g. “GIF”).
magick columns unsigned long Base image width (before transformations)
magick filename char[MaxTextExtent] Base image filename (before transformations)
magick rows unsigned long Base image height (before transformations)

20 API Structures and Enumerations 75

ImageInfo Structure (continued)

Member Type Description
matte unsigned int If non-zero, then the index member of pixels represents the alpha

channel.
matte color PixelPacket Image matte (transparent) color

mean error unsigned long The mean error per pixel computed when an image is color
per pixel reduced. This parameter is only valid if verbose is set to True

and the image has just been quantized.
montage char * Tile size and offset within an image montage. Only valid for

montage images.
next struct Image * Next image frame in sequence
normalized double The normalized max error per pixel computed when an image
maximum error is color reduced. This parameter is only valid if verbose is set to

true and the image has just been quantized.
normalized double The normalized mean error per pixel computed when an
mean error image is color reduced. This parameter is only valid if verbose

is set to True and the image has just been quantized.
offset int Number of initial bytes to skip over when reading raw image.
page RectangleInfo size of Postscript page and offsets. Offsets are measured from

the lower left corner of the page, regardless of their sign.
pipe int Set to True if image is read/written from/to a POSIX pipe. To

read from (or write to) an open pipe, set this member to True,
set the file member to a stdio stream representing the pipe (ob-
tained from popen()), and invoke ReadImage(), WriteImage().
The pipe is automatically closed via pclose() when the operation
completes.

pixels PixelPacket Image pixels retrieved via GetPixelCache() or initialized via Set-
PixelCache().

previous struct Image * Previous image frame in sequence.
rendering intent RenderingIntent The type of rendering intent.
rows unsigned long Image height
scene unsigned long Image frame scene number.
tainted int Set to non-zero (True) if the image pixels have been modified.
tile info RectangleInfo Describes a tile within an image. For example, if your images is

640x480 you may only want 320x256 with an offset of +128+64.
It is used for raw formats such as RGB and CMYK as well as for
TIFF.

timer TimerInfo Support for measuring actual (user + system) and elapsed exe-
cution time.

total colors unsigned long The number of colors in the image after QuantizeImage(), or
QuantizeImages() if the verbose flag was set before the call. Cal-
culated by GetNumberColors().

76 ImageMagick

ImageInfo Structure (continued)

Member Type Description
units ResolutionType Units of image resolution
x resolution double Horizontal resolution of the image.
y resolution double Vertical resolution of the image

ImageAttribute The ImageAttribute structure is used to add arbitary textual at-
tributes to an image. Each attribute has an associated key and value. Add new
attributes, or update an existing attribute, via SetImageAttribute() and obtain the
value of an existing attribute via GetImageAttribute(). Key-strings used by Im-
ageMagick include “Comment” (image comment), “Label” (image label), and
“Signature” (image signature).

The members of the ImageAttribute structure are shown in the following table:

Table20.5: ImageAttribute Structure

ImageAttribute Structure

Member Type Description
key char * key.
value char * value.
compression unsigned int compression.

ImageInfo The ImageInfo structure is used to supply option information to the meth-
ods AllocateImage(), AnimateImages(), BlobToImage(), CloneAnnotateInfo(),
DisplayImages(), GetAnnotateInfo(), ImageToBlob(), PingImage(), ReadImage(),
ReadImages(), and, WriteImage(). These methods update information in Image-
Info to reflect attributes of the current image.

Use CloneImageInfo() to duplicate an existing ImageInfo structure or allocate a
new one. Use DestroyImageInfo() to deallocate memory associated with an Im-
ageInfo structure. Use GetImageInfo() to initialize an existing ImageInfo struc-
ture. Use SetImageInfo() to set image type information in the ImageInfo struc-
ture based on an existing image.

The members of the ImageInfo structure are shown in the following table:

20 API Structures and Enumerations 77

Table20.6: ImageInfo Structure

ImageInfo Structure

Member Type Description
adjoin unsigned int Join images into a single multi-image file.
antialias unsigned int Control antialiasing of rendered graphic primitives and text

fonts.
background color PixelPacket Image background color.
border color PixelPacket Image border color.
box char * Base color that annotation text is rendered on.
colorspace ColorspaceType Image pixel interpretation. If the colorspace is RGB the pixels

are red, green, blue. If matte is true, then red, green, blue, and
index. If it is CMYK, the pixels are cyan, yellow, magenta, black.
Otherwise the colorspace is ignored.

compression CompressionType Image compression type. The default is the compression type of
the specified image file.

delay char * Time in 1/100ths of a second (0 to 65535) which must expire
before displaying the next image in an animated sequence. This
option is useful for regulating the animation of a sequence of
GIF images within Netscape.

density char * Vertical and horizontal resolution in pixels of the image. This
option specifies an image density when decoding a Postscript or
Portable Document page. Often used with page.

depth unsigned long Image depth (8 or 16).
dispose char * GIF disposal method. This option is used to control how succes-

sive frames are rendered (how the preceding frame is disposed
of) when creating a GIF animation.

dither unsigned int Apply Floyd/Steinberg error diffusion to the image. The basic
strategy of dithering is to trade intensity resolution for spatial
resolution by averaging the intensities of several neighboring
pixels. Images which suffer from severe contouring when re-
ducing colors can be improved with this option. The colors or
monochrome option must be set for this option to take effect.

file FILE * Stdio stream to read image from or write image to. If set, Im-
ageMagick will read from or write to the stream rather than
opening a file. Used by ReadImage() and WriteImage(). The
stream is closed when the operation completes.

filename char[MaxTextExtent] Image file name to read or write.
fill PixelPacket Drawing object fill color.

78 ImageMagick

ImageInfo Structure (continued)

Member Type Description
font char * Text rendering font. If the font is a fully qualified X server font

name, the font is obtained from an X server. To use a TrueType
font, precede the TrueType filename with an @. Otherwise, spec-
ify a Postscript font name (e.g. “helvetica”).

fuzz int Colors within this distance are considered equal. A number of
algorithms search for a target color. By default the color must be
exact. Use this option to match colors that are close to the target
color in RGB space.

interlace InterlaceType The type of interlacing scheme (default NoInterlace). This op-
tion is used to specify the type of interlacing scheme for raw
image formats such as RGB or YUV. NoInterlace means do not
interlace, LineInterlace uses scanline interlacing, and PlaneInter-
lace uses plane interlacing. PartitionInterlace is like PlaneInter-
lace except the different planes are saved to individual files (e.g.
image.R, image.G, and image.B). Use LineInterlace or PlaneIn-
terlace to create an interlaced GIF or progressive JPEG image.

iterations char * Number of iterations to loop an animation (e.g. Netscape loop
extension) for.

linewidth unsigned long Line width for drawing lines, circles, ellipses, etc.
magick char[MaxTextExtent] Image encoding format (e.g. “GIF”).
matte color PixelPacket Image matte (transparent) color.
monochrome unsigned int Transform the image to black and white.
page char * Equivalent size of Postscript page.
ping unsigned int Set to True to read enough of the image to determine the im-

age columns, rows, and filesize. The columns, rows, and size
attributes are valid after invoking ReadImage() while ping is set.
The image data is not valid after calling ReadImage() if ping is
set.

pointsize double Text rendering font point size.
preview type PreviewType Image manipulation preview option. Used by ‘display’.
quality unsigned long JPEG/MIFF/PNG compression level (default 75).
server name char * X11 display to display to obtain fonts from, or to capture image

from.
size char * Width and height of a raw image (an image which does not sup-

port width and height information). Size may also be used to
affect the image size read from a multi-resolution format (e.g.
Photo CD, JBIG, or JPEG.

stroke PixelPacket Drawing object outline color.
subimage unsigned long Subimage of an image sequence.
subrange unsigned long Number of images relative to the base image.
texture char * Image filename to use as background texture.

20 API Structures and Enumerations 79

ImageInfo Structure (continued)

Member Type Description
tile char * Tile name.
units ResolutionType Units of image resolution.
verbose unsigned int Print detailed information about the image if True.
view char * FlashPix viewing parameters.

MagickInfo The MagickInfo structure is used by ImageMagick to register support
for an Image format. The MagickInfo structure is allocated with default param-
eters by calling SetMagickInfo(). Image formats are registered by calling Regis-
terMagickInfo() which adds the initial structure to a linked list (at which point it
is owned by the list). A pointer to the structure describing a format may be ob-
tained by calling GetMagickInfo(). Pass the argument NULL to obtain the first
member of this list. A human-readable list of registered image formats may be
printed to a file descriptor by calling ListMagickInfo().

Support for formats may be provided as a module which is part of the Im-
ageMagick library, provided by a module which is loaded dynamically at run-
time, or directly by the linked program. Users of ImageMagick will normally
want to create a loadable-module, or support encode/decode of an image format
directly from within their program.

Table20.7: MagickInfo Structure

MagickInfo Structure

Member Type Description
tag const char * Magick string (e.g. “GIF”) to call this format.
decoder Image * (*decoder)(const ImageInfo *)

Function to decode image data and return ImageMagick Image.
encoder unsigned int (*encoder)(const ImageInfo, Image *)

Function to encode image data with options passed via Image-
Info and image represented by Image.

adjoin unsigned int Set to non-zero (True) if this file format supports multi-frame
images.

blob support unsigned int Set to non-zero (True) if the encoder and decoder for this format
supports operating arbitrary BLOBs (rather than only disk files).

raw unsigned int Image format does not contain size (must be specified in Image-
Info).

80 ImageMagick

MagickInfo Structure (continued)

Member Type Description
description char * Long form image format description (e.g. “CompuServe graph-

ics interchange format”).
module char * Name of module (e.g. “GIF”) which registered this format. Set

to NULL if format is not registered by a module.
data void * User specified data. A way to pass any sort of data structure to

the endoder/decoder. To set this, GetMagickInfo() must be called
to first obtain a pointer to the registered structure since it can not
be set via a RegisterMagickInfo() parameter.

previous MagickInfo Previous MagickInfo struct in linked-list. NULL if none.
next MagickInfo Next MagickInfo struct in linked-list. NULL if none.

PixelPacket The PixelPacket structure is used to represent DirectClass color pixels
in ImageMagick. If the image is indicated as a PseudoClass image, its Direct-
Class representation is only valid immediately after calling SyncImage(). If an
image is set as PseudoClass and the DirectClass representation is modified, the
image should then be set as DirectClass. Use QuantizeImage() to restore the
PseudoClass colormap if the DirectClass representation is modified.

The members of the PixelPacket structure are shown in the following table:

Table20.8: PixelPacket Structure

PixelPacket Structure

Member Type Description
red Quantum red.
green Quantum green.
blue Quantum blue.
opacity Quantum opacity.

ProfileInfo The ProfileInfo structure is used to represent ICC, IPCT, and generic
profiles in ImageMagick (stored as an opaque BLOB).

The members of the ProfileInfo structure are shown in the following table:

20 API Structures and Enumerations 81

Table20.9: ProfileInfo Structure

ProfileInfo Structure

Member Type Description
length unsigned int length.
info unsigned char * data.

RectangleInfo The RectangleInfo structure is used to represent positioning infor-
mation in ImageMagick.

The members of the RectangleInfo structure are shown in the following table:

Table20.10: RectangleInfo Structure

RectangleInfo Structure

Member Type Description
width unsigned long width.
height unsigned long height.
x long x.
y long y.

20.2 API Enumerations

CacheType

ChannelType ChannelType is used as an argument when doing color separations.
Use ChannelType when extracting a channel from an image. MatteChannel is
useful for extracting the opacity values from an image.

82 ImageMagick

Table20.11: ChannelType Enumeration

ChannelType Enumeration

Enumeration Description
UndefinedChannel Unset value.
RedChannel Select red channel.
GreenChannel Select green channel.
BlueChannel Select blue channel.
MatteChannel Select matte (opacity values) channel.

ClassType ClassType specifies the image storage class.

Table20.12: ClassType Enumeration

ClassType Enumeration

Enumeration Description
UndefinedClass Unset value.
DirectClass Image is composed of pixels which represent literal color values.
PseudoClass Image is composed of pixels which specify an index in a color

palette.

ColorspaceType The ColorspaceType enumeration is used to specify the colorspace
that quantization (color reduction and mapping) is done under or to specify the
colorspace when encoding an output image. Colorspaces are ways of describing
colors to fit the requirements of a particular application (e.g. Television, offset
printing, color monitors). Color reduction, by default, takes place in the RGB-
Colorspace. Empirical evidence suggests that distances in color spaces such as
YUVColorspace or YIQColorspace correspond to perceptual color differences
more closely han do distances in RGB space. These color spaces may give better
results when color reducing an image. Refer to quantize for more details.

When encoding an output image, the colorspaces RGBColorspace, CMYKCol-
orspace, and GRAYColorspace may be specified. The CMYKColorspace op-
tion is only applicable when writing TIFF, JPEG, and Adobe Photoshop bitmap
(PSD) files.

20 API Structures and Enumerations 83

Table20.13: ColorspaceType Enumeration

ColorspaceType Enumeration

Enumeration Description
UndefinedColorspace Unset value.
RGBColorspace Red-Green-Blue colorspace.
GRAYColorspace
TransparentColorspace The Transparent color space behaves uniquely in that it preserves

the matte channel of the image if it exists.
OHTAColorspace
XYZColorspace
YCbCrColorspace
YCCColorspace
YIQColorspace
YPbPrColorspace
YUVColorspace Y-signal, U-signal, and V-signal colorspace. YUV is most

widely used to encode color for use in television transmission.
CMYKColorspace Cyan-Magenta-Yellow-Black colorspace. CYMK is a subtrac-

tive color system used by printers and photographers for the ren-
dering of colors with ink or emulsion, normally on a white sur-
face.

sRGBColorspace

CompositeOperator CompositeOperator is used to select the image composition
algorithm used to compose a composite image with an image. By default, each
of the composite mage pixels are replaced by the corresponding image tile pixel.
Specify CompositeOperator to select a different algorithm.

Table20.14: CompositeOperator Enumeration

CompositeOperator Enumeration

Enumeration Description
UndefinedCompositeOp Unset value.
OverCompositeOp The result is the union of the the two image shapes with the

composite image obscuring image in the region of overlap.

84 ImageMagick

CompositeOperator Enumeration (continued)

Enumeration Description
InCompositeOp The result is a simply composite image cut by the shape of im-

age. None of the image data of image is included in the result.
OutCompositeOp The resulting image is composite image with the shape of image

cut out.
AtopCompositeOp The result is the same shape as image image, with composite im-

age obscuring image there the image shapes overlap. Note that
this differs from OverCompositeOp because the portion of com-
posite image outside of image’s shape does not appear in the
result.

XorCompositeOp The result is the image data from both composite image and im-
age that is outside the overlap region. The overlap region will be
blank.

PlusCompositeOp The result is just the sum of the image data. Output values are
cropped to 255 (no overflow). This operation is independent of
the matte channels.

MinusCompositeOp The result of composite image - image, with overflow cropped
to zero. The matte chanel is ignored (set to 255, full coverage).

AddCompositeOp The result of composite image + image, with overflow wrapping
around (mod 256).

SubtractCompositeOp The result of composite image - image, with underflow wrapping
around (mod 256). The add and subtract operators can be used
to perform reverible transformations.

DifferenceCompositeOp The result of abs (composite image - image). This is useful for
comparing two very similar images.

BumpmapCompositeOp The result image shaded by composite image.
ReplaceCompositeOp The resulting image is image replaced with composite image.

Here the matte information is ignored.
ReplaceRedCompositeOp The resulting image is the red channel in image replaced with the

red channel in composite image. The other channels are copied
untouched.

ReplaceGreenCompositeOp The resulting image is the green channel in image replaced with
the green channel in composite image. The other channels are
copied untouched.

ReplaceBlueCompositeOp The resulting image is the blue channel in image replaced with
the blue channel in composite image. The other channels are
copied untouched.

20 API Structures and Enumerations 85

CompositeOperator Enumeration (continued)

Enumeration Description
ReplaceMatteCompositeOp The resulting image is the matte channel in image replaced with

the matte channel in composite image. The other channels are
copied untouched. The image compositor requires a matte, or al-
pha channel in the image for some operations. This extra channel
usually defines a mask which represents a sort of a cookie-cutter
for the image. This is the case when matte is 255 (full cover-
age) for pixels inside the shape, zero outside, and between zero
and 255 on the boundary. For certain operations, if image does
not have a matte channel, it is initialized with 0 for any pixel
matching in color to pixel location (0, 0), otherwise 255 (to work
properly borderWidth must be 0).

CompressionType CompressionType is used to express the desired compression
type when encoding an image. Be aware that most image types only support a
sub-set of the available compression types. If the compression type specified is
incompatable with the image, ImageMagick selects a compression type compat-
able with the image type.

Table20.15: CompressionType Enumeration

CompressionType Enumeration

Enumeration Description
UndefinedCompression Unset value.
NoCompression No compression.
BZipCompression BZip (Burrows-Wheeler block-sorting text compression algo-

rithm and Huffman coding) as used by bzip2 utilities.
FaxCompression CCITT Group 3 FAX compression.
Group4Compression CCITT Group 4 FAX compression (used only for TIFF).
JPEGCompression JPEG compression.
LosslessJPEGCompression Lossless JPEG compression.
LZWCompression Lempel-Ziv-Welch (LZW) compression.
RunlengthEncodedCompression Run-Length encoded (RLE) compression.
ZipCompression Lempel-Ziv compression (LZ77) as used in PKZIP and GNU

gzip.

86 ImageMagick

DecorationType

ExceptionType

FilterTypes FilterTypes is used to adjust the filter algorithm used when resizing im-
ages. Different filters experience varying degrees of success with various images
and can take signicantly different amounts of processing time. ImageMagick
uses the Lanczos filter by default since this filter has been shown to provide the
best results for most images in a reasonable amount of time. Other filter types
(e.g. TriangleFilter) may execute much faster but may show artifacts when the
image is re-sized or around diagonal lines. The only way to be sure is to test the
filter with sample images.

Table20.16: FilterTypes Enumeration

FilterTypes Enumeration

Enumeration Description
UndefinedFilter Unset value.
PointFilter Point Filter
BoxFilter Box Filter
TriangleFilter Triangle Filter
HermiteFilter Hermite Filter
HanningFilter Hanning Filter
HammingFilter Hamming Filter
BlackmanFilter Blackman Filter
GaussianFilter Gaussian Filter
QuadraticFilter Quadratic Filter
CubicFilter Cubic Filter
CatromFilter Catrom Filter
MitchellFilter Mitchell Filter
LanczosFilter Lanczos Filter
BesselFilter Bessel Filter
SincFilter Sinc Filter

GeometryFlags

GravityType GravityType specifies positioning of an object (e.g. text, image) within
a bounding region (e.g. an image). Gravity provides a convenient way to locate

20 API Structures and Enumerations 87

objects irrespective of the size of the bounding region, in other words, you don’t
need to provide absolute coordinates in order to position an object. A common
default for gravity is NorthWestGravity.

Table20.17: GravityType Enumeration

GravityType Enumeration

Enumeration Description
ForgetGravity Don’t use gravity.
NorthWestGravity Position object at top-left of region.
NorthGravity Postiion object at top-center of region.
NorthEastGravity Position object at top-right of region.
WestGravity Position object at left-center of region.
CenterGravity Position object at center of region.
EastGravity Position object at right-center of region.
SouthWestGravity Position object at left-bottom of region.
SouthGravity Position object at bottom-center of region.
SouthEastGravity Position object at bottom-right of region.

ImageType ImageType indicates the type classification of the image.

Table20.18: ImageType Enumeration

ImageType Enumeration

Enumeration Description
UndefinedType Unset value.
BilevelType Monochrome image.
GrayscaleType Grayscale image.
PaletteType Indexed color (palette) image.
PaletteMatteType Indexed color (palette) image with opacity.
TrueColorType Truecolor image.
TrueColorMatteType Truecolor image with opacity.
ColorSeparationType Cyan/Yellow/Magenta/Black (CYMK) image.

88 ImageMagick

InterlaceType InterlaceType specifies the ordering of the red, green, and blue pixel
information in the image. Interlacing is usually used to make image information
available to the user faster by taking advantage of the space vs time tradeoff.
For example, interlacing allows images on the Web to be recognizable sooner
and satellite images to accumulate/render with image resolution increasing over
time.

Use LineInterlace or PlaneInterlace to create an interlaced GIF or progressive
JPEG image.

Table20.19: InterlaceType Enumeration

InterlaceType Enumeration

Enumeration Description
UndefinedInterlace Unset value.
NoInterlace Don’t interlace image (RGBRGBRGBRGBRGBRGB...).
LineInterlace Use scanline interlacing (RRR...GGG...BBB...RRR...GGG...BBB...).
PlaneInterlace Use plane interlacing (RRRRRR...GGGGGG...BBBBBB...).
PartitionInterlace Similar to plane interlaing except that the different planes are

saved to individual files (e.g. image.R, image.G, and image.B).

LineCap

LineJoin

MapMode

MontageMode

NoiseType NoiseType is used as an argument to select the type of noise to be added
to the image.

20 API Structures and Enumerations 89

Table20.20: NoiseType Enumeration

NoiseType Enumeration

Enumeration Description
UniformNoise Uniform noise.
GaussianNoise Gaussian noise.
MultiplicativeGaussianNoise Multiplicative Gaussian noise.
ImpulseNoise Impulse noise.
LaplacianNoise Laplacian noise.
PoissonNoise Poisson noise.

PaintMethod PaintMethod specifies how pixel colors are to be replaced in the im-
age. It is used to select the pixel-filling algorithm employed.

Table20.21: PaintMethod Enumeration

PaintMethod Enumeration

Enumeration Description
PointMethod Replace pixel color at point.
ReplaceMethod Replace color for all image pixels matching color at point.
FloodfillMethod Replace color for pixels surrounding point until encountering

pixel that fails to match color at point.
FillToBorderMethod Replace color for pixels surrounding point until encountering

pixels matching border color.
ResetMethod Replace colors for all pixels in image with pen color.

ProfileType

PreviewType

PrimitiveType

PrimitiveType

90 ImageMagick

RenderingIntent Rendering intent is a concept defined by ICC Spec ICC.1:1998-
09, “File Format for Color Profiles”. ImageMagick uses RenderingIntent in or-
der to support ICC Color Profiles.

From the specification: “Rendering intent specifies the style of reproduction to
be used during the evaluation of this profile in a sequence of profiles. It applies
specifically to that profile in the sequence and not to the entire sequence. Typi-
cally, the user or application will set the rendering intent dynamically at runtime
or embedding time.”

Table20.22: RenderingIntent Enumeration

RenderingIntent Enumeration

Enumeration Description
UndefinedIntent Unset value.
SaturationIntent A rendering intent that specifies the saturation of the pixels in

the image is preserved perhaps at the expense of accuracy in hue
and lightness.

PerceptualIntent A rendering intent that specifies the full gamut of the image is
compressed or expanded to fill the gamut of the destination de-
vice. Gray balance is preserved but colorimetric accuracy might
not be preserved.

AbsoluteIntent Absolute colorimetric.
RelativeIntent Relative colorimetric.

ResolutionType By default, ImageMagick defines resolutions in pixels per inch.
ResolutionType provides a means to adjust this.

Table20.23: ResolutionType Enumeration

ResolutionType Enumeration

Enumeration Description
UndefinedResolution Unset value.
PixelsPerInchResolution Density specifications are specified in units of pixels per inch

(english units).
PixelsPerCentimeterResolution Density specifications are specified in units of pixels per cen-

timeter (metric units).

21 C API Methods

21.1 Methods to Constitute an Image

ConstituteImage() create an image from pixel data.

Image ConstituteImage (const unsigned long width, const unsigned long
height, const char map, const StorageType type, const void pixels, Ex-
ceptionInfo exception)

ConstituteImage() returns an image from the pixel data you supply. The pixel
data must be in scanline order top-to-bottom. The data can be of type char,
short int, int, long, float, or double. Float and double require the pixels to be
normalized [0..1] otherwise [0..MaxRGB]. For example, to create a 640 x 480
image from unsigned red-green-blue character data, use

image = ConstituteImage(640, 480, "RGB", CharPixel, pixels, exception);

A description of each parameter follows:

width Width in pixels of the image.
height Height in pixels of the image.
map This string reflects the expected ordering of the pixel array. It can be any

combination or order of R = red, G = green, B = blue, A = alpha, C = cyan,
Y = yellow, M = magenta, K = black, or I = intensity (for grayscale).

type Define the data type of the pixels. Float and double types are expected to
be normalized [0..1] otherwise [0..MaxRGB]. Choose from these types:

CharPixel ShortPixel IntegerPixel
LongPixel FloatPixel DoublePixel

pixels This array of values contain the pixel components as defined by map and
type. The expected length of the array varies depending on the values of
width, height, map, and type.

exception Return any errors or warnings in this structure.

91

92 ImageMagick

DispatchImage() extract pixel data from an image.

unsigned int DispatchImage(Image image, const long x, const long y, const
unsigned long columns, const unsigned long rows, const char map, const
StorageType type, void pixels, ExceptionInfo exception)

DispatchImage() extracts pixel data from an image and returns it to you. The
method returns False on success otherwise True if an error is encountered. The
data is returned as char, short int, int, long, float, or double in the order specified
by map.

Suppose we want want to extract the first scanline of a 640x480 image as char-
acter data in red-green-blue order:

status = DispatchImage(image, 0, 0, 640, 1, "RGB", 0, pixels, exception);

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of pixels you

want to extract.
map This string reflects the expected ordering of the pixel array. It can be any

combination or order of R = red, G = green, B = blue, A = alpha, C = cyan,
Y = yellow, M = magenta, K = black, or I = intensity (for grayscale).

type Define the data type of the pixels. Float and double types are normalized
to [0..1] otherwise [0..MaxRGB]. Choose from these types:

CharPixel ShortPixel IntegerPixel
LongPixel FloatPixel DoublePixel

pixels This array of values contain the pixel components as defined by map
and type. You must preallocate this array where the expected length varies
depending on the values of width, height, map, and type.

exception Return any errors or warnings in this structure.

PingImage() get information about an image.

Image PingImage(const ImageInfo image info, ExceptionInfo exception)

PingImage() returns all the attributes of an image or image sequence except for
the pixels. It is much faster and consumes far less memory than ReadImage().
On failure, a NULL image is returned and exception describes the reason for
the failure.

A description of each parameter follows:

image info Ping the image defined by the file or filename members of
this structure.

exception Return any errors or warnings in this structure.

21 C API Methods 93

ReadImage() read one or more image files.

Image ReadImage(const ImageInfo image info, ExceptionInfo exception)

ReadImage() reads an image or image sequence from a file or file handle. On
failure, a NULL image is returned and exception describes the reason for the
failure.

A description of each parameter follows:

image info Read the image defined by the file or filename members of
this structure.

exception Return any errors or warnings in this structure.

WriteImage() write one or more image files.

unsigned int WriteImage(const ImageInfo image info, Image image)

Use Write() to write an image or an image sequence to a file or filehandle.
Write() returns 0 is there is a memory shortage or if the image cannot be writ-
ten. Check the exception member of image to determine the cause for any
failure.

A description of each parameter follows:

image info Write the image defined by the file or filename members of
this structure.

image The image.

21.2 ImageMagick Image Methods

AllocateImage() allocate an image.

Image AllocateImage(const ImageInfo image info)

AllocateImage() returns a pointer to an image structure initialized to default val-
ues.

A description of each parameter follows:

image info Many of the image default values are set from this structure. For
example, filename, compression, depth, background color, and others.

94 ImageMagick

AllocateImageColormap() allocate an image colormap.

unsigned int AllocateImageColormap(Image image, const unsigned long
colors)

AllocateImageColormap() allocates an image colormap and initializes it to a
linear gray colorspace. If the image already has a colormap, it is replaced. Allo-
cateImageColormap() returns True if successful, otherwise False if there is not
enough memory.

A description of each parameter follows:

image The image.
colors The number of colors in the image colormap.

AllocateNextImage() allocate the next image in a sequence.

void AllocateNextImage(const ImageInfo image info, Image image)

Use AllocateNextImage() to initialize the next image in a sequence to default
values. The next member of image points to the newly allocated image. If
there is a memory shortage, next is assigned NULL.

A description of each parameter follows:

image info Many of the image default values are set from this structure. For
example, filename, compression, depth, background color, and others.

image The image.

AnimateImages() animate an image sequence.

unsigned int AnimateImages(const ImageInfo image info, Image image)

AnimateImages() repeatedly displays an image sequence to any X window screen.
It returns a value other than 0 if successful. Check the exception member of
image to determine the cause for any failure.

A description of each parameter follows:

image info The image info.
image The image.

21 C API Methods 95

AppendImages() append a set of images.

Image AppendImages (Image image, const unsigned int stack, Exception-
Info exception)

The Append() method takes a set of images and appends them to each other.
Each image in the set must have the same width or height (or both). Append()
returns a single image where each image in the original set is side-by-side if all
the heights the same or stacked on top of each other if all widths are the same.
On failure, a NULL image is returned and exception describes the reason for
the failure.

A description of each parameter follows:

image The image sequence.
stack An unsigned value other than stacks rectangular image top-to-bottom oth-

erwise left-to-right.
exception Return any errors or warnings in this structure.

AverageImages() average a set of images.

Image AverageImages (const Image image, ExceptionInfo exception)

The Average() method takes a set of images and averages them together. Each
image in the set must have the same width and height. Average() returns a single
image with each corresponding pixel component of each image averaged. On
failure, a NULL image is returned and exception describes the reason for the
failure.

A description of each parameter follows:

image The image sequence.
exception Return any errors or warnings in this structure.

ChannelImage() extract a channel from the image.

unsigned int ChannelImage (Image image, const ChannelType channel)

Extract a channel from the image. A channel is a particular color component of
each pixel in the image. Choose from these components:

A description of each parameter follows:

image The image.

96 ImageMagick

channel Identify which channel to extract:

Red
Cyan
Green
Magenta
Blue
Yellow
Opacity
Black

CloneImage() create a new copy of an image.

Image CloneImage(Image image, const unsigned long columns, const un-
signed long rows, const unsigned int orphan, ExceptionInfo exception)

CloneImage() copies an image and returns the copy as a new image object. If
the specified columns and rows is 0, an exact copy of the image is returned, oth-
erwise the pixel data is undefined and must be initialized with the SetImagePix-
els() and SyncImagePixels() methods. On failure, a NULL image is returned and
exception describes the reason for the failure.

A description of each parameter follows:

image The image.
columns The number of columns in the cloned image.
rows The number of rows in the cloned image.
orphan With a value other than 0, the cloned image is an orphan. An orphan is

a stand-alone image that is not assocated with an image list. In effect, the
next and previous members of the cloned image is set to NULL.

exception Return any errors or warnings in this structure.

CloneImageInfo() clone an image info structure.

ImageInfo CloneImageInfo(const ImageInfo image info)

CloneImageInfo() makes a copy of the given image info structure. If NULL is
specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image info The image info.

21 C API Methods 97

CompositeImage() composite one image to another.

unsigned int CompositeImage(Image image, const CompositeOperator com-
pose, const Image composite image, const long x offset, const long
y offset)

CompositeImage() returns the second image composited onto the first at the
specified offsets.

A description of each parameter follows:

image The image.
compose This operator affects how the composite is applied to the image. The

default is Over. Choose from these operators:

OverCompositeOP InCompositeOP OutCompositeOP
AtopCompositeOP XorCompositeOP PlusCompositeOP
MinusCompositeOP AddCompositeOP SubtractCompositeOP
DifferenceCompositeOP BumpmapCompositeOP CopyCompositeOP
DisplaceCompositeOP

composite image The composite image.
x offset The column offset of the composited image. If the offset is negative, it

is measured between the right edges of the images.
y offset The row offset of the composited image. If it is negative, it is measured

between the bottom edges of the images.

CycleColormapImage() displace a colormap.

CycleColormapImage(Image image, const int amount)

CycleColormap() displaces an image’s colormap by a given number of positions.
If you cycle the colormap a number of times you can produce a psychodelic
effect.

A description of each parameter follows:

image The image.
amount Offset the colormap this much.

DescribeImage() describe an image.

void DescribeImage (Image image, FILE file, const unsigned int verbose)

98 ImageMagick

DescribeImage() describes an image by printing its attributes to the file. At-
tributes include the image width, height, size, and others.

A description of each parameter follows:

image The image.
file The file, typically stdout.
verbose A value other than zero prints additional detailed information about the

image.

DestroyImage() destroy an image.

void DestroyImage(Image image)

DestroyImage() dereferences an image, deallocating memory associated with
the image if the reference count becomes zero.

A description of each parameter follows:

image The image.

DestroyImageInfo() destroy image info.

void DestroyImageInfo(ImageInfo image info)

DestroyImageInfo() deallocates memory associated with image Info.

A description of each parameter follows:

image info The image info.

DestroyImages() destroy an image sequence.

void DestroyImages(Image image)

DestroyImages() is a convenience method. It calls DestroyImage() for each im-
age in the sequence.

A description of each parameter follows:

image The image sequence.

21 C API Methods 99

DisplayImages() display an image sequence.

unsigned int DisplayImages(const ImageInfo image info, Image image)

DisplayImages() displays an image sequence to any X window screen. It returns
a value other than 0 if successful. Check the exceptionmember of image to
determine the reason for any failure.

A description of each parameter follows:

image info The image info.
image The image.

GetImageDepth() get image depth.

unsigned int GetImageDepth(Image image)

GetImageDepth() returns the depth of the image, either 8 or 16 bits. By default,
pixels components are stored as 16-bit two byte unsigned short integers that
range in value from 0 to 65535. However, if all the pixels have lower-order bytes
that are identical to their higher-order bytes, the image depth is 8-bit.

A description of each parameter follows:

image The image.

GetImageInfo() get image info.

void GetImageInfo(ImageInfo image info)

GetImageInfo() initializes image info to default values.

A description of each parameter follows:

image info The image info.

GetImageType() get image type.

ImageType GetImageType(const Image image,ExceptionInfo *exception)

GetImageType() returns the type of image:

100 ImageMagick

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte
Optimize

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsImagesEqual() measure the pixel differences between two images.

unsigned int IsImagesEqual(Image image, Image reference)

IsImagesEqual() measures the difference between colors at each pixel location of
two images. A value other than 0 means the colors match exactly. Otherwise an
error measure is computed by summing over all pixels in an image the distance
squared in RGB space between each image pixel and its corresponding pixel in
the reference image. The error measure is assigned to these image members:

mean error per pixel The mean error for any single pixel in the image.
normalized mean error The normalized mean quantization error for any sin-

gle pixel in the image. This distance measure is normalized to a range be-
tween 0 and 1. It is independent of the range of red, green, and blue values
in the image.

normalized maximum error The normalized maximum quantization error for
any single pixel in the image. This distance measure is normalized to a range
between 0 and 1. It is independent of the range of red, green, and blue values
in your image.

A small normalized mean square error, accessed as image->normalized mean error,
suggests the images are very similiar in spatial layout and color.

A description of each parameter follows:

image The image.
reference The reference image.

IsTaintImage() tell if an image has been altered.

unsigned int IsTaintImage(const Image image)

IsTaintImage() returns a value other than 0 if any pixel in the image has been
altered since it was first constituted.

A description of each parameter follows:

image The image.

21 C API Methods 101

ProfileImage() add or remove a profile.

unsigned int ProfileImage(Image image, const char profile name, const char
filename)

ProfileImage() adds or removes a ICM, IPTC, or generic profile from an image.
If the profile name is defined it is deleted from the image. If a filename is given,
one or more profiles are read and added to the image. ProfileImage() returns a
value other than 0 if the profile is successfully added or removed from the image.

A description of each parameter follows:

image The image.
profile name The type of profile to add or remove.
filename The filename of the ICM, IPTC, or generic profile.

SetImage() set image pixels to the background color.

void SetImage(Image image, const Quantum opacity)

SetImage() sets the red, green, and blue components of each pixel to the im-
age background color and the opacity component to the specified level of trans-
parency. The background color is defined by the background colormember
of the image.

A description of each parameter follows:

image The image.
opacity Set each pixel to this level of transparency.

SetImageClipMask()

unsigned int SetImageClipMask(Image image,Image clip mask)

SetImageClipMask() associates a clip mask with the image. The clip mask must
be the same dimensions as the image.

A description of each parameter follows:

image The image.
clip mask The clip mask.

102 ImageMagick

SetImageDepth()

unsigned int SetImageDepth(Image image,const unsigned long depth)

SetImageDepth() sets the depth of the image, either 8 or 16. Some image for-
mats support both 8 and 16-bits per color component (e.g. PNG). Use SetIm-
ageDepth() to specify your preference. A value other than 0 is returned if the
depth is set. Check the exception member of image to determine the cause
for any failure.

A description of each parameter follows:

image The image.
depth The image depth.

SetImageOpacity() set image pixels transparency level.

void SetImageOpacity(Image image, const unsigned long opacity)

SetImageOpacity() attenuates the opacity channel of an image. If the image pix-
els are opaque, they are set to the specified opacity level. Otherwise, the pixel
oapcity values are blended with the supplied transparency value.

A description of each parameter follows:

image The image.
opacity The level of transparency: 0 is fully opaque and MaxRGB is fully trans-

parent.

SetImageType() set image type.

void SetImageType(Image image, const ImageType image type)

SetImageType() sets the type of image. Choose from these types:

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte

A description of each parameter follows:

image The image.
image type Image type.

21 C API Methods 103

TextureImage() tile a texture on image background.

void TextureImage(Image image, Image texture)

TextureImage() repeatedly tiles the texture image across and down the image
canvas.

A description of each parameter follows:

image The image.
texture This image is the texture to layer on the background.

21.3 Working With Image Lists

CloneImageList() duplicate an image list.

Image CloneImageList(Image images, ExceptionInfo exception)

CloneImageList() returns a duplicate of the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

DeleteImageList() delete an image from the list.

unsigned int DeleteImageList(Image images, const unsigned long offset)

DeleteImageList() deletes an image at the specified position in the list..

A description of each parameter follows:

images The image list.
offset The position within the list.

DestroyImageList() destroy an image list.

DestroyImageList(Image images)

DestroyImageList() destroys an image list.

A description of each parameter follows:

images The image list.

104 ImageMagick

GetImageList() get an image from an image list.

Image GetImageList(Image images, const unsigned long offset, Exception-
Info exception)

GetImageList() returns an image at the specified position in the image list.

A description of each parameter follows:

images The image list.
offset The position in the image list.
exception Return any errors or warnings in this structure.

GetImageListSize() the number of images in the image list.

size t GetImageListSize(const Image images)

GetImageListSize() returns the number of images in the image list.

A description of each parameter follows:

images The image list.

GetNextImage() the next image in a sequence.

Image GetNextImage(Image imageis)

GetNextImage() returns the next image in an image sequence.

A description of each parameter follows:

images The image list.

ImageListToGroup() convert an image list to an array.

Image ListToGroupImage(const Image image, ExceptionInfo exception)

ListToGroupImage() is a convenience method that converts a linked list of im-
ages to a sequential array. For example,

group = ListToGroupImage(images, exception);
for (i=0; i < n; i++)

puts(group[i]->filename);

A description of each parameter follows:

image The image list.
exception Return any errors or warnings in this structure.

21 C API Methods 105

NewImageList() create an empty image list.

Image NewImageList(void)

NewImageList() creates an empty image list.

PopImageList() remove the first image from an image list.

Image PopImageList(Image *images)

PopImageList() removes the first image in the list.

A description of each parameter follows:

images The image list.

PushImageList() add an image to the end of an image list.

unsigned int PushImageList(Image images, const Image image, Exception-
Info exception)

PushImageList() adds the image to the end of the image list.

A description of each parameter follows:

images The image list.
image The image.
exception Return any errors or warnings in this structure.

ReverseImageList() reverse an image list.

Image CloneImageList(Image images, ExceptionInfo exception)

CloneImageList() returns a duplicate of the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

106 ImageMagick

SetImageList() add an image to the end of an image list.

unsigned int SetImageList(Image images, const Image image, Exception-
Info exception)

SetImageList() inserts an image into the list at the specified position.

A description of each parameter follows:

images The image list.
image The image.
exception Return any errors or warnings in this structure.

ShiftImageList() reverse an image list.

Image CloneImageList(Image images, ExceptionInfo exception)

ShiftImageList() returns a duplicate of the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

SpliceImageList() splice an image list.

Image SpliceImageList(Image images, const unsigned long offset, const
unsigned long length, const Image splices, ExceptionInfo exception)

SplicemageList() removes the images designated by offset and length from the
list and replaces them with the specified list.

A description of each parameter follows:

images The image list.
offset The position in the image list.
length The length of the image list to remove.
splices eplace the removed image list with this list.
exception Return any errors or warnings in this structure.

UnshiftImageList() reverse an image list.

Image CloneImageList(Image images, ExceptionInfo exception)

UnshiftImageList() returns a duplicate of the specified image list.

A description of each parameter follows:

images The image list.
exception Return any errors or warnings in this structure.

21 C API Methods 107

21.4 Methods to Count the Colors in an Image

CompressColormap() remove duplicate or unused colormap entries.

void CompressColormap(Image image)

CompressColormap() compresses an image colormap by removing any dupli-
cate or unused color entries.

A description of each parameter follows:

image The image.

GetNumberColors() count the number of unique colors.

unsigned long GetNumberColors(const Image image, FILE file, Exception-
Info exception)

GetNumberColors() returns the number of unique colors in an image.

A description of each parameter follows:

image The image.
file Write a histogram of the color distribution to this file handle.
exception Return any errors or warnings in this structure.

IsGrayImage() is the image grayscale?

unsigned int IsGrayImage(Image image, ExceptionInfo exception)

IsGrayImage() returns True if all the pixels in the image have the same red,
green, and blue intensities.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsMonochromeImage() is the image monochrome?

unsigned int IsMonochromeImage(Image image, ExceptionInfo exception)

IsMonochromeImage() returns True if all the pixels in the image have the same
red, green, and blue intensities and the intensity is either 0 or MaxRGB.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

108 ImageMagick

IsOpaqueImage() does the image have transparent pixels?

unsigned int IsOpaqueImage(Image image, ExceptionInfo exception)

IsOpaqueImage() returns True if any of the pixels in the image have an opacity
value other than opaque (0).

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

IsPaletteImage() does the image have less than 256 unique colors?

unsigned int IsPaletteImage(Image image, ExceptionInfo exception)

IsPaletteImage() returns True if the image is colormapped and has 256 unique
colors or less.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

ListColorsInfo list color names.

unsigned int ListColorInfo(FILE file, ExceptionInfo exception)

ListColorInfo() lists color names to the specified file. Color names are a conve-
nience. Rather than defining a color by its red, green, and blue intensities just
use a color name such as white, blue, or yellow.

A description of each parameter follows:

file List color names to this file handle.
exception Return any errors or warnings in this structure.

QueryColorDatabase() return numerical values corresponding to a color name.

unsigned int QueryColorDatabase(const char name, PixelPacket color)

QueryColorDatabase() returns the red, green, blue, and opacity intensities for a
given color name.

A description of each parameter follows:

name The color name (e.g. white, blue, yellow).
color The red, green, blue, and opacity intensities values of the named color in

this structure.

21 C API Methods 109

QueryColorname() return a color name for the corresponding numerical values.

unsigned int QueryColorname(const Image *image, const PixelPacket �
color, ComplianceType compliance, char name, ExceptionInfo exception)

QueryColorname() returns a named color for the given color intensity. If an exact
match is not found, a hex value is return instead. For example an intensity of
rgb:(0,0,0) returns black whereas rgb:(223,223,223) returns #dfdfdf.

A description of each parameter follows:

image The image.
color The color intensities.
compliance Adhere to this color standard: SVG or X11.
name Return the color name or hex value.
exception Return any errors or warnings in this structure.

21.5 Methods to Reduce the Number of Unique
Colors in an Image

CloneQuantizeInfo()

QuantizeInfo CloneQuantizeInfo(const QuantizeInfo quantize info)

Method CloneQuantizeInfo makes a duplicate of the given quantize info struc-
ture, or if quantize info is NULL, a new one. A description of each parameter
follows:

quantize info a structure of type info.

DestroyQuantizeInfo()

DestroyQuantizeInfo(QuantizeInfo quantize info)

Method DestroyQuantizeInfo deallocates memory associated with an Quantize-
Info structure.

A description of each parameter follows:

quantize info Specifies a pointer to an QuantizeInfo structure.

110 ImageMagick

GetQuantizeInfo()

GetQuantizeInfo(QuantizeInfo quantize info)

Method GetQuantizeInfo initializes the QuantizeInfo structure.

A description of each parameter follows:

quantize info Specifies a pointer to a QuantizeInfo structure.

MapImage()

unsigned int MapImage(Image image, Image map image, const unsigned
int dither)

MapImage replaces the colors of an image with the closest color from a reference
image.

A description of each parameter follows:

image The image.
map image Specifies a pointer to a Image structure. Reduce image to a set of

colors represented by this image.
dither Set this integer value to something other than zero to dither the quantized

image.

MapImages()

unsigned int MapImages(Image images, Image map image, const unsigned
int dither)

MapImages replaces the colors of a sequence of images with the closest color
from a reference image.

A description of each parameter follows:

image The image.
map image Specifies a pointer to a Image structure. Reduce image to a set of

colors represented by this image.
dither Set this integer value to something other than zero to dither the quantized

image.

21 C API Methods 111

QuantizationError()

unsigned int QuantizationError(Image image)

Method QuantizationError measures the difference between the original and
quantized images. This difference is the total quantization error. The error is
computed by summing over all pixels in an image the distance squared in RGB
space between each reference pixel value and its quantized value. These values
are computed:

A description of each parameter follows:

mean error per pixel This value is the mean error for any single pixel in the
image.

normalized mean square error This value is the normalized mean quantiza-
tion error for any single pixel in the image. This distance measure is nor-
malized to a range between 0 and 1. It is independent of the range of red,
green, and blue values in the image.

normalized maximum square error Thsi value is the normalized maximum
quantization error for any single pixel in the image. This distance measure
is normalized to a range between 0 and 1. It is independent of the range of
red, green, and blue values in your image.

A description of each parameter follows:

image The image.

QuantizeImage()

unsigned int QuantizeImage(const QuantizeInfo quantize info, Image �
image)

Method QuantizeImage analyzes the colors within a reference image and chooses
a fixed number of colors to represent the image. The goal of the algorithm is to
minimize the difference between the input and output image while minimizing
the processing time.

A description of each parameter follows:

quantize info Specifies a pointer to an QuantizeInfo structure.
image Specifies a pointer to a Image structure.

QuantizeImages()

unsigned int QuantizeImages(const QuantizeInfo quantize info, Image �
images)

112 ImageMagick

QuantizeImages analyzes the colors within a set of reference images and chooses
a fixed number of colors to represent the set. The goal of the algorithm is to
minimize the difference between the input and output images while minimizing
the processing time.

A description of each parameter follows:

quantize info Specifies a pointer to an QuantizeInfo structure.
images Specifies a pointer to a list of Image structures.

21.6 Methods to Segment an Image with
Thresholding Fuzzy c-Means

SegmentImage()

unsigned int SegmentImage(Image image, const ColorspaceType colorspace,
const unsigned int verbose, const double cluster threshold, const double
smoothing threshold)

Method SegmentImage segment an image by analyzing the histograms of the
color components and identifying units that are homogeneous with the fuzzy
c-means technique.

Specify cluster threshold as the number of pixels in each cluster must exceed
the the cluster threshold to be considered valid. Smoothing threshold eliminates
noise in the second derivative of the histogram. As the value is increased, you
can expect a smoother second derivative. The default is 1.5.

A description of each parameter follows:

image Specifies a pointer to an Image structure returned from ReadImage.
colorspace An unsigned integer value that indicates the colorspace. Empirical

evidence suggests that distances in YUV or YIQ correspond to perceptual
color differences more closely than do distances in RGB space. The image
is then returned to RGB colorspace after color reduction.

verbose A value greater than zero prints detailed information about the identi-
fied classes.

21.7 Methods to Resize an Image

MagnifyImage() scale the image to twice its size.

Image MagnifyImage(image, ExceptionInfo exception)

21 C API Methods 113

MagnifyImage() is a convenience method that scales an image proportionally to
twice its size.

image The image.
exception Return any errors or warnings in this structure.

MinifyImage() scale the image to half its size.

Image MinifyImage(Image image, ExceptionInfo exception)

MinifyImage() is a convenience method that scales an image proportionally to
half its size.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

ResizeImage() scale an image with a filter.

Image ResizeImage(Image image, const unsigned long columns, const un-
signed long rows, const FilterType filter, const double blur, Exception-
Info exception)

ResizeImage() scales an image to the desired dimensions with one of these fil-
ters:

Bessel Blackman Box
Catrom Cubic Gaussian
Hanning Hermite Lanczos
Mitchell Point Quadratic
Sinc Triangle

A description of each parameter follows:

image The image.
columns The number of columns in the scaled image.
rows The number of rows in the scaled image.
filter Image filter to use.
blur The blur factor where ¿ 1 is blurry, ¡ 1 is sharp.
exception Return any errors or warnings in this structure.

114 ImageMagick

SampleImage()

Image SampleImage(Image image, const unsigned long columns, const un-
signed long rows, ExceptionInfo exception)

SampleImage() scales an image to the desired dimensions with pixel sampling.
Unlike other scaling methods, this method does not introduce any additional
color into the scaled image.

A description of each parameter follows:

image The image.
columns The number of columns in the sampled image.
rows The number of rows in the sampled image.
exception Return any errors or warnings in this structure.

ScaleImage() scale an image to given dimensions.

Image ScaleImage(Image image, const unsigned long columns, const un-
signed long rows, ExceptionInfo exception)

ScaleImage() changes the size of an image to the given dimensions.

A description of each parameter follows:

image The image.
columns The number of columns in the scaled image.
rows The number of rows in the scaled image.
exception Return any errors or warnings in this structure.

21.8 Methods to Transform an Image

ChopImage() chop an image.

Image ChopImage(Image image, const RectangleInfo chop info, Excep-
tionInfo exception)

Chop() removes a region of an image and collapses the image to occupy the
removed portion.

A description of each parameter follows:

image The image.
chop info Define the region of the image to chop with members x, y, width,

and height. If the offset x is negative, it specifies the distance from the
right edge of the region to the right edge of the chopping region. Similarly,
if the offset y is negative, the distance is between the bottom edges.

exception Return any errors or warnings in this structure.

21 C API Methods 115

CoalesceImages() coalesce a set of images.

Image CoalesceImages(Image image, ExceptionInfo exception)

CoalesceImages() composites a set of images while respecting any page offsets
and disposal methods. GIF, MIFF, and MNG animation sequences typically start
with an image background and each subsequent image varies in size and offset.
Coalesce() returns a new sequence where each image in the sequence is the same
size as the first and composited with the next image in the sequence.

Regardless of their signs, offsets are measured from the lower left corner of the
composition to the lower left corner of each image. Positive offsets represent a
location of the image to the right and upward from the corner of the composition.

A description of each parameter follows:

image The image sequence.
exception Return any errors or warnings in this structure.

CropImage() crop an image.

Image CropImage(Image image, const RectangleInfo crop info, Exception-
Info exception)

Use CropImage() to extract a region of the image starting at the offset defined
by crop info.

A description of each parameter follows:

image The image.
crop info Define the region of the image to crop with members x, y, width,

and height. If the offset x is negative, it specifies the distance from the
right edge of the region to the right edge of the chopping region. Similarly,
if the offset y is negative, the distance is between the bottom edges.

exception Return any errors or warnings in this structure.

DeconstructImages() return the constituent parts of an image sequence

Image DeconstructImages(Image image, ExceptionInfo exception)

DeconstructImages() compares each image with the next in a sequence and re-
turns the maximum bounding region of any pixel differences it discovers.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

116 ImageMagick

FlipImage() reflect an image vertically.

Image FlipImage(Image image, ExceptionInfo exception)

FlipImage() creates a vertical mirror image by reflecting the pixels around the
central x-axis.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

FlopImage() reflect an image horizontally.

Image FlopImage(Image image, ExceptionInfo exception)

FlopImage() creates a horizontal mirror image by reflecting the pixels around
the central y-axis.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

MosaicImages() inlay an image sequence to form a single coherent picture.

Image MosaicImages(const Image image, ExceptionInfo exception)

MosaicImages() inlays an image sequence to form a single coherent picture.
It returns a single image with each image in the sequence composited at the
location defined by the page member of image.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

RollImage() offset and roll over an image.

Image RollImage(Image image, const int x offset, const int y offset, Excep-
tionInfo exception)

RollImage() offsets an image as defined by x offset and y offset.

A description of each parameter follows:

21 C API Methods 117

image The image.
x offset The number of columns to roll in the horizontal direction, right-to-left

(left-to-right if x offset is negative).
y offset The number of rows to roll in the vertical direction, bottom-to-top (top-

to-bottom if y offset is negative).
exception Return any errors or warnings in this structure.

ShaveImage()

Image ShaveImage(const Image image, const RectangleInfo shave info, Ex-
ceptionInfo exception)

Method ShaveImage shaves pixels from the image edges. It allocates the mem-
ory necessary for the new Image structure and returns a pointer to the new image.

A description of each parameter follows:

image The image.
shave info Specifies a pointer to a structure of type Rectangle which defines the

shave region.
exception Return any errors or warnings in this structure.

TransformImage() resize or crop an image.

void TransformImage(Image image, const char crop geometry, const char
image geometry)

TransformImage() is a convenience method that behaves like ResizeImage() or
CropImage() but accepts scaling and/or cropping information as a region geom-
etry specification. If the operation fails, the original image handle is returned.

A description of each parameter follows:

image The image. The transformed image is returned as this parameter.
crop geometry A crop geometry string. This geometry defines a subregion of

the image to crop.
image geometry An image geometry string. This geometry defines the final

size of the image.

21.9 Methods to Shear or Rotate an Image by an
Arbitrary Angle

RotateImage

118 ImageMagick

Image RotateImage(Image image, const double degrees, ExceptionInfo �
exception)

Method RotateImage creates a new image that is a rotated copy of an existing
one. Positive angles rotate counter-clockwise(right-hand rule), while negative
angles rotate clockwise. Rotated images are usually larger than the originals and
have ’empty’ triangular corners. X axis. Empty triangles left over from shear-
ing the image are filled with the color defined by the pixel at location(0, 0).
RotateImage allocates the memory necessary for the new Image structure and
returns a pointer to the new image.

Method RotateImage is based on the paper ”A Fast Algorithm for General Raster
Rotatation” by Alan W. Paeth. RotateImage is adapted from a similar method
based on the Paeth paper written by Michael Halle of the Spatial Imaging Group,
MIT Media Lab.

A description of each parameter follows:

image The image.
degrees Specifies the number of degrees to rotate the image.
exception Return any errors or warnings in this structure.

ShearImage()

Image ShearImage(Image image, const double x shear, const double y shear,
ExceptionInfo exception)

Method ShearImage creates a new image that is a shear image copy of an exist-
ing one. Shearing slides one edge of an image along the X or Y axis, creating
a parallelogram. An X direction shear slides an edge along the X axis, while a
Y direction shear slides an edge along the Y axis. The amount of the shear is
controlled by a shear angle. For X direction shears, x shear is measured relative
to the Y axis, and similarly, for Y direction shears y shear is measured relative
to the X axis. Empty triangles left over from shearing the image are filled with
the color defined by the pixel at location(0, 0). ShearImage allocates the memory
necessary for the new Image structure and returns a pointer to the new image.

Method ShearImage is based on the paper ”A Fast Algorithm for General Raster
Rotatation” by Alan W. Paeth.

A description of each parameter follows:

image The image.
x shear, y shear Specifies the number of degrees to shear the image.
exception Return any errors or warnings in this structure.

21 C API Methods 119

21.10 Methods to Enhance an Image

ContrastImage() enhance or reduce the image contrast.

unsigned int ContrastImage(Image image, const unsigned int sharpen)

Contrast() enhances the intensity differences between the lighter and darker ele-
ments of the image. Set sharpen to a value other than 0 to increase the image
contrast otherwise the contrast is reduced.

A description of each parameter follows:

image The image.
sharpen Increase or decrease image contrast.

EqualizeImage() equalize an image.

unsigned int EqualizeImage(Image image)

EqualizeImage() applies a histogram equalization to the image.

A description of each parameter follows:

image The image.

GammaImage() gamma-correct the image.

unsigned int GammaImage(Image image, const char gamma)

Use GammaImage() to gamma-correct an image. The same image viewed on
different devices will have perceptual differences in the way the image’s intensi-
ties are represented on the screen. Specify individual gamma levels for the red,
green, and blue channels, or adjust all three with the gamma parameter. Values
typically range from 0.8 to 2.3.

You can also reduce the influence of a particular channel with a gamma value of
0.

A description of each parameter follows:

image The image.
gamma Define the level of gamma correction.

120 ImageMagick

LevelImage() adjust the level of image contrast.

unsigned int LevelImage(Image image, const char levels)

Give three point values delineated with commas: black, mid, and white (e.g.
10/1.0/65000). The white and black points range from 0 to MaxRGB and mid
ranges from 0 to 10.

A description of each parameter follows:

image The image.
gamma Define the image contrast levels.

ModulateImage() adjust the brightness, saturation, and hue.

unsigned int ModulateImage(Image image, const char modulate)

ModulateImage() lets you control the brightness, saturation, and hue of an im-
age. Modulate represents the brightness, saturation, and hue as one parameter
(e.g. 90,150,100).

A description of each parameter follows:

image The image.
modulate Define the percent change in brightness, saturation, and hue.

NormalizeImage() enhance image contrast.

unsigned int NormalizeImage(Image image)

The NormalizeImage() method enhances the contrast of a color image by adjust-
ing the pixels color to span the entire range of colors available.

A description of each parameter follows:

image The image.

21.11 ImageMagick Image Effects Methods

AddNoiseImage() add noise to an image.

Image AddNoiseImage(const Image image, const NoiseType noise type,
ExceptionInfo exception)

21 C API Methods 121

AddNoiseImage() adds random noise to the image.

A description of each parameter follows:

image The image.
noise type The type of noise: Uniform, Gaussian, Multiplicative, Impulse, Lapla-

cian, or Poisson.
exception Return any errors or warnings in this structure.

BlurImage() blur the image.

Image BlurImage(const Image image, const double radius, const double
sigma, ExceptionInfo exception)

BlurImage() blurs an image. We convolve the image with a Gaussian operator
of the given radius and standard deviation (sigma). For reasonable results, the
radius should be larger than sigma. Use a radius of 0 and BlurImage() selects a
suitable radius for you.

A description of each parameter follows:

radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

ColorizeImage() colorize an image.

Image ColorizeImage(const Image image, const char opacity, const Pixel-
Packet target, ExceptionInfo exception)

ColorizeImage() blends the fill color with each pixel in the image. A percentage
blend is specified with opacity. Control the application of different color com-
ponents by specifying a different percentage for each component (e.g. 90/100/10
is 90% red, 100% green, and 10% blue).

A description of each parameter follows:

image The image.
opacity A character string indicating the level of opacity as a percentage.
target A color value.
exception Return any errors or warnings in this structure.

122 ImageMagick

ConvolveImage() apply a convolution kernel to the image.

Image ConvolveImage(const Image image, const unsigned int order, const
double kernel, ExceptionInfo exception)

ConvolveImage() applies a custom convolution kernel to the image.

A description of each parameter follows:

image The image.
order The number of columns and rows in the filter kernel.
kernel An array of double representing the convolution kernel.
exception Return any errors or warnings in this structure.

DespeckleImage() filter speckles.

Image DespeckleImage(const Image image, ExceptionInfo exception)

DespeckleImage() reduces the speckle noise in an image while perserving the
edges of the original image.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

EdgeImage() detect edges within an image.

Image EdgeImage(const Image image, const double radius, ExceptionInfo
exception)

EdgeImage() finds edges in an image. Radius defines the radius of the convo-
lution filter. Use a radius of 0 and Edge() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

21 C API Methods 123

EmbossImage emboss the image.

Image EmbossImage(const Image image, const double radius, const double
sigma, ExceptionInfo exception)

EmbossImage() returns a grayscale image with a three-dimensional effect. We
convolve the image with a Gaussian operator of the given radius and standard
deviation (sigma). For reasonable results, radius should be larger than sigma.
Use a radius of 0 and Emboss() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the pixel neighborhood.
sigma The standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

EnhanceImage() filter a noisy image.

Image EnhanceImage(const Image image, ExceptionInfo exception)

EnhanceImage() applies a digital filter that improves the quality of a noisy im-
age.

A description of each parameter follows:

image The image.
exception Return any errors or warnings in this structure.

GaussianBlurImage() blur an image.

Image GaussianBlurImage(const Image image, const double radius, const
double sigma, ExceptionInfo exception)

GaussianBlurImage() blurs an image. We convolve the image with a Gaussian
operator of the given radius and standard deviation (sigma). For reasonable re-
sults, the radius should be larger than sigma. Use a radius of 0 and Gaussian-
BlurImage() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius the radius of the Gaussian, in pixels, not counting the center pixel.
sigma the standard deviation of the Gaussian, in pixels.
exception Return any errors or warnings in this structure.

124 ImageMagick

ImplodeImage() apply an implosion/explosion filter.

Image ImplodeImage(const Image image, const double amount, Exception-
Info exception)

ImplodeImage() applies a special effects filter to the image where amount de-
termines the amount of implosion. Use a negative amount for an explosive effect.

A description of each parameter follows:

image The image.
amount Define the extent of the implosion.
exception Return any errors or warnings in this structure.

MedianFilterImage() filter a noisy image.

Image MedianFilterImage(const Image image, const double radius, Excep-
tionInfo exception)

MedianFilterImage() applies a digital filter that improves the quality of a noisy
image. Each pixel is replaced by the median in a set of neighboring pixels as
defined by radius.

A description of each parameter follows:

image The image.
radius The radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

MorphImages() morph a set of images.

Image MorphImages(const Image image, const unsigned long number frames,
ExceptionInfo exception)

The MorphImages() method requires a minimum of two images. The first image
is transformed into the second by a number of intervening images as specified
by frames.

A description of each parameter follows:

image The image.
number frames Define the number of in-between image to generate. The more

in-between frames, the smoother the morph.
exception Return any errors or warnings in this structure.

21 C API Methods 125

MotionBlurImage() simulate motion blur.

Image MotionBlurImage(const Image image, const double radius, const
double sigma, ExceptionInfo exception)

MotionBlurImage() simulates motion blur. We convolve the image with a Gaus-
sian operator of the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 and MotionBlurIm-
age()selects a suitable radius for you. Angle gives the angle of the blurring
motion.

A description of each parameter follows:

image The image.
radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Motion, in pixels.
angle Apply the effect along this angle.
exception Return any errors or warnings in this structure.

NegateImage()

unsigned int NegateImage(Image image, const unsigned int grayscale)

Method NegateImage negates the colors in the reference image. The Grayscale
option means that only grayscale values within the image are negated.

A description of each parameter follows:

image The image.

OilPaintImage() simulate an oil painting.

Image OilPaintImage(const Image image, const double radius, Exception-
Info exception)

OilPaintImage() applies a special effect filter that simulates an oil painting. Each
pixel is replaced by the most frequent color occurring in a circular region defined
by radius.

A description of each parameter follows:

image The image.
radius The radius of the circular neighborhood.
exception Return any errors or warnings in this structure.

126 ImageMagick

PlasmaImage() initialize an image with plasma fractal values.

unsigned int PlasmaImage(const Image image, const SegmentInfo segment,
int attenuate, int depth)

PlasmaImage() initializes an image with plasma fractal values. The image must
be initialized with a base color and the random number generator seeded before
this method is called.

A description of each parameter follows:

image The image.
segment Define the region to apply plasma fractals values.
attenuate Define the plasma attenuation factor.
depth Limit the plasma recursion depth.

ReduceNoiseImage() smooth an image.

Image ReduceNoiseImage(Image image, const double, ExceptionInfo �
exception)

ReduceNoiseImage() smooths the contours of an image while still preserving
edge information. The algorithm works by replacing each pixel with its neigh-
bor closest in value. A neighbor is defined by radius. Use a radius of 0 and
ReduceNoise() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius The radius of the pixel neighborhood.
exception Return any errors or warnings in this structure.

ShadeImage shade the image with light source.

Image ShadeImage(const Image image, const unsigned int color shading,
double azimuth, double elevation, ExceptionInfo exception)

ShadeImage() shines a distant light on an image to create a three-dimensional
effect. You control the positioning of the light with azimuth and elevation; az-
imuth is measured in degrees off the x axis and elevation is measured in pixels
above the Z axis.

A description of each parameter follows:

image The image.
color shading A value other than zero shades the red, green, and blue compo-

nents of the image.
azimuth, elevation Define the light source direction.
exception Return any errors or warnings in this structure.

21 C API Methods 127

SharpenImage() sharpen an image.

Image SharpenImage(Image image, const double radius, const double sigma,
ExceptionInfo exception)

SharpenImage() sharpens an image. We convolve the image with a Gaussian op-
erator of the given radius and standard deviation (sigma). For reasonable results,
radius should be larger than sigma. Use a radius of 0 and SharpenImage() selects
a suitable radius for you.

A description of each parameter follows:

radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Laplacian, in pixels.
exception Return any errors or warnings in this structure.

SolarizeImage() apply solorization special effect.

void SolarizeImage(Image image, const double threshold)

SolarizeImage() applies a special effect to the image, similar to the effect achieved
in a photo darkroom by selectively exposing areas of photo sensitive paper to
light. Threshold ranges from 0 to MaxRGB and is a measure of the extent of
the solarization.

A description of each parameter follows:

image The image.
threshold Define the extent of the solarization.

SpreadImage() randomly displace pixels.

Image SpreadImage(const Image image, const unsigned int amount, Excep-
tionInfo exception)

SpreadImage() is a special effects method that randomly displaces each pixel in
a block defined by the amount parameter.

A description of each parameter follows:

image The image.
radius An unsigned value constraining the ”vicinity” for choosing a random

pixel to swap.
exception Return any errors or warnings in this structure.

128 ImageMagick

SteganoImage() hide a digital watermark.

Image SteganoImage(const Image image, Image watermark, ExceptionInfo
exception)

Use SteganoImage() to hide a digital watermark within the image. Recover the
hidden watermark later to prove that the authenticity of an image. textttOffset
defines the start position within the image to hide the watermark.

A description of each parameter follows:

image The image.
watermark The watermark image.
exception Return any errors or warnings in this structure.

StereoImage() create a stereo special effect.

Image StereoImage(cosnt Image image, Image offset image, ExceptionInfo
exception)

StereoImage() combines two images and produces a single image that is the
composite of a left and right image of a stereo pair. Special red-green stereo
glasses are required to view this effect.

A description of each parameter follows:

image The left-hand image.
offset image The right-hand image.
exception Return any errors or warnings in this structure.

SwirlImage() swirl pixels about image center.

Image SwirlImage(const Image image, double degrees, ExceptionInfo �
exception)

SwirlImage() swirls the pixels about the center of the image, where degrees
indicates the sweep of the arc through which each pixel is moved. You get a
more dramatic effect as the degrees move from 1 to 360.

A description of each parameter follows:

image The image.
degrees Define the tightness of the swirling effect.
exception Return any errors or warnings in this structure.

21 C API Methods 129

ThresholdImage() divide pixels based on intensity values.

unsigned int ThresholdImage(Image image, const double threshold)

ThresholdImage() changes the value of individual pixels based on the intensity
of each pixel compared to threshold. The result is a high-contrast, two color
image.

A description of each parameter follows:

image The image.
threshold Define the threshold value.

UnsharpMaskImage() sharpen an image.

Image UnsharpMaskImage(const Image image, const double radius, const
double sigma, const double amount, const double threshold, Exception-
Info exception)

UnsharpMaskImage() sharpens an image. We convolve the image with a Gaus-
sian operatorof the given radius and standard deviation (sigma). For reasonable
results, radius should be larger than sigma. Use a radius of 0 and Unsharp-
MaskImage() selects a suitable radius for you.

A description of each parameter follows:

image The image.
radius The radius of the Gaussian, in pixels, not counting the center pixel.
sigma The standard deviation of the Gaussian, in pixels.
amount The percentage of the difference between the original and the blur im-

age that is added back into the original.
threshold The threshold in pixels needed to apply the diffence amount.
exception Return any errors or warnings in this structure.

WaveImage() special effects filter.

Image WaveImage(const Image image, const double amplitude, const dou-
ble wave length, ExceptionInfo exception)

The WaveImage() filter creates a ”ripple” effect in the image by shifting the
pixels vertically along a sine wave whose amplitude and wavelength is specified
by the given parameters.

A description of each parameter follows:

image The image.
amplitude, frequency Define the amplitude and wavelength of the sine wave.
exception Return any errors or warnings in this structure.

130 ImageMagick

21.12 ImageMagick Image Decoration Methods

BorderImage() frame the image with a border.

Image BorderImage(const Image image, const RectangleInfo border info,
ExceptionInfo exception)

BorderImage() surrounds the image with a border of the color defined by the
border color member of the image structure. The width and height of the
border are defined by the corresponding members of the border info struc-
ture.

A description of each parameter follows:

image The image.
border info Define the width and height of the border.
exception Return any errors or warnings in this structure.

FrameImage() surround the image with a decorative border.

Image FrameImage(const Image image, const FrameInfo frame info, Ex-
ceptionInfo exception)

FrameImage() adds a simulated three-dimensional border around the image. The
color of the border is defined by the matte color member of image. Mem-
bers width and height of frame info specify the border width of the ver-
tical and horizontal sides of the frame. Members inner and outer indicate
the width of the inner and outer shadows of the frame.

A description of each parameter follows:

image The image.
frame info Define the width and height of the frame and its bevels.
exception Return any errors or warnings in this structure.

RaiseImage() lighten or darken edges to create a 3-D effect.

unsigned int RaiseImage(Image image, const RectangleInfo raise info, const
int raised)

RaiseImage() creates a simulated three-dimensional button-like effect by light-
ening and darkening the edges of the image. Members width and height of
raise info define the width of the vertical and horizontal edge of the effect.

A description of each parameter follows:

21 C API Methods 131

image The image.
raise info Define the width and height of the raised area. region.
raised A value other than zero creates a 3-D raised effect, otherwise it has a

lowered effect.

21.13 Methods to Annotate an Image

AnnotateImage() annotate an image with text.

unsigned int AnnotateImage(Image image, DrawInfo draw info)

Annotate() allows you to scribble text across an image. The text may be repre-
sented as a string or filename. Precede the filename with an ”at” sign (@) and the
contents of the file are drawn on the image. Your text can optionally embed any
of these special characters:

%b file size in bytes.
%c comment.
%d directory in which the image resides.
%e extension of the image file.
%f original filename of the image.
%h height of image.
%i filename of the image.
%k number of unique colors.
%l image label.
%m image file format.
%n number of images in a image sequence.
%o output image filename.
%p page number of the image.
%q image depth (8 or 16).
%s image scene number.
%t image filename without any extension.
%u a unique temporary filename.
%w image width.
%x x resolution of the image.
%y y resolution of the image.

A description of each parameter follows:

image The image.
draw info The draw info.

132 ImageMagick

GetTypeMetrics() get font attributes.

unsigned int GetTypeMetrics(Image image, const DrawInfo draw info, Type-
Metric metrics)

GetTypeMetrics() returns the following information for the supplied font and
text:

� character width� character height� ascender� descender� text width� text height� maximum horizontal advance

A description of each parameter follows:

image The image.
draw info The draw info.
metrics Return the font metrics in this structure.

21.14 Methods to Draw on an Image

CloneDrawInfo clone a draw info structure.

DrawInfo CloneDrawInfo(const ImageInfo image info, const DrawInfo �
draw info)

CloneDrawInfo() makes a copy of the given draw info structure. If NULL is
specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image info The image info.
draw info The draw info.

ColorFloodfillImage() floodfill the designed area with color.

unsigned int ColorFloodfillImage(Image image, const DrawInfo draw info,
const PixelPacket target, const long x, const long y, const PaintMethod
method)

21 C API Methods 133

ColorFloodfill() changes the color value of any pixel that matches target and
is an immediate neighbor. If the method FillToBorderMethod is speci-
fied, the color value is changed for any neighbor pixel that does not match the
bordercolor member of image.

By default target must match a particular pixel color exactly. However, in
many cases two colors may differ by a small amount. The fuzz member of
image defines how much tolerance is acceptable to consider two colors as the
same. For example, set fuzz to 10 and the color red at intensities of 100 and
102 respectively are now interpreted as the same color for the purposes of the
floodfill.

A description of each parameter follows:

image The image.
draw info The draw info.
target The RGB value of the target color.
x, y The starting location of the operation.
method Choose either FloodfillMethod or FillToBorderMethod.

DestroyDrawInfo() destroy draw info.

void DestroyDrawInfo(DrawInfo draw info)

DestroyDrawInfo() deallocates memory associated with draw info.

A description of each parameter follows:

draw info The draw info.

DrawImage annotate an image with a graphic primitive.

unsigned int DrawImage(Image image, const DrawInfo draw info)

Use DrawImage() to draw a graphic primitive on your image. The primitive may
be represented as a string or filename. Precede the filename with an ”at” sign (@)
and the contents of the file are drawn on the image. You can affect how text is
drawn by setting one or more members of the draw info structure:

primitive The primitive describes the type of graphic to draw. Choose from
these primitives:

PointPrimitive LinePrimitive RectanglePrimitive
roundRectanglePrimitive ArcPrimitive EllipsePrimitive
CirclePrimitive PolylinePrimitive PolygonPrimitive
BezierPrimitive PathPrimitive ColorPrimitive
MattePrimitive TextPrimitive ImagePrimitive

134 ImageMagick

antialias The visible effect of antialias is to smooth out the rounded corners of
the drawn shape. Set to 0 to keep crisp edges.

bordercolor The Color primitive with a method of FloodFill changes the color
value of any pixel that matches fill and is an immediate neighbor. If
bordercolor is specified, the color value is changed for any neighbor
pixel that is not fill.

density This parameter sets the vertical and horizontal resolution of the font.
The default is 72 pixels/inch.

fill The fill color paints any areas inside the outline of drawn shape.
font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified

X11 font (-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*).
geometry Geometry defines the baseline position where the graphic primitive

is rendered (e.g. +100+50).
method Primitives Matte and Image behavior depends on the painting method

you choose:

Point Replace Floodfull
FillToBorder Reset

points List one or more sets of coordinates as required by the graphic primitive
you selected.

pointsize The font pointsize. The default is 12.
rotate Specifies a rotation of rotate-angle degrees about a given point.
scale Specifies a scale operation by sx and sy.
skewX Specifies a skew transformation along the x-axis.
skewY Specifies a skew transformation along the y-axis.
stroke A stroke color paints along the outline of the shape.
stroke width The width of the stroke of the shape. A zero value means no

stroke is painted.
translate Specifies a translation by tx and ty.

A description of each parameter follows:

image The image.
draw info The draw info.

MatteFloodfillImage() floodfill an area with transparency.

unsigned int MatteFloodfillImage(Image image, const PixelPacket target,
const unsigned int opacity, const long x, const long y, const PaintMethod
method)

MatteFloodfill() changes the transparency value of any pixel that matches target
and is an immediate neighbor. If the method FillToBorderMethod is spec-
ified, the transparency value is changed for any neighbor pixel that does not
match the bordercolor member of image.

21 C API Methods 135

By default target must match a particular pixel transparency exactly. How-
ever, in many cases two transparency values may differ by a small amount. The
fuzz member of image defines how much tolerance is acceptable to consider
two transparency values as the same. For example, set fuzz to 10 and the opacity
values of 100 and 102 respectively are now interpreted as the same value for the
purposes of the floodfill.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
opacity The level of transparency: 0 is fully opaque and MaxRGB is fully trans-

parent.
x, y The starting location of the operation.
method Choose either FloodfillMethod or FillToBorderMethod.

OpaqueImage globally change a color.

unsigned int OpaqueImage(Image image, const PixelPacket target, const
PixelPacket fill)

OpaqueImage() changes any pixel that matches color with the color defined
by fill.

By default colormust match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10
and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
fill The replacement color.

TransparentImage() make color transparent.

unsigned int TransparentImage(Image image, const PixelPacket target, const
unsigned int opacity)

TransparentImage() changes the opacity value associated with any pixel that
matches color to the value defined by opacity.

By default colormust match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10

136 ImageMagick

and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

A description of each parameter follows:

image The image.
target The RGB value of the target color.
fill The replacement opacity value.

21.15 Methods to Create a Montage

CloneMontageInfo() clone a montage info structure.

MontageInfo CloneMontageInfo(const ImageInfo image info, const Mon-
tageInfo montage info)

CloneMontageInfo() makes a copy of the given montage info structure. If NULL
is specified, a new image info structure is created initialized to default values.

A description of each parameter follows:

image info The image info.
montage info The montage info.

DestroyMontageInfo() destroy montage info.

void DestroyMontageInfo(MontageInfo montage info)

DestroyMontageInfo() deallocates memory associated with montage info.

A description of each parameter follows:

montage info The montage info.

GetMontageInfo() get montage info.

void GetMontageInfo(const ImageInfo image info, MontageInfo montage info)

GetMontageInfo() initializes montage info to default values.

A description of each parameter follows:

image info The image info.
montage info The montage info.

21 C API Methods 137

MontageImages() uniformly tile thumbnails across an image canvas.

Image MontageImages(const Image image, const MontageInfo montage info,
ExceptionInfo exception)

Montageimages() is a layout manager that lets you tile one or more thumbnails
across an image canvas.

A description of each parameter follows:

image The image.
montage info The montage info.
exception Return any errors or warnings in this structure.

21.16 Image Text Attributes Methods

DestroyImageAttributes() destroy an image attribute.

DestroyImageAttributes(Image image)

DestroyImageAttributes() deallocates memory associated with the image attribute
list.

A description of each parameter follows:

image The image.

GetImageAttribute() get an image attribute.

ImageAttribute GetImageAttribute(const Image image, const char key)

GetImageAttribute() searches the list of image attributes and returns a pointer to
attribute if it exists otherwise NULL.

A description of each parameter follows:

image The image.
key These character strings are the name of an image attribute to return.

138 ImageMagick

SetImageAttribute() set an image attribute.

unsigned int SetImageAttribute(Image image, const char key, const char
value)

SetImageAttribute searches the list of image attributes and replaces the attribute
value. If it is not found in the list, the attribute name and value is added to the
list. If the attribute exists in the list, the value is concatenated to the attribute.
SetImageAttribute returns True if the attribute is successfully concatenated or
added to the list, otherwise False. If the value is NULL, the matching key is
deleted from the list.

A description of each parameter follows:

image The image.
key, value These character strings are the name and value of an image attribute

to replace or add to the list.

StoreImageAttribute() store an image attribute.

StoreImageAttribute(Image image, char text)

StoreImageAttribute() is used to store an image attribute from a text string with
the syntax: NAME=VALUE.

A description of each parameter follows:

image The image.
text The text string that is parsed and used to determine the name and value of

the new attribute.

21.17 Methods to Compute a Digital Signature
for an Image

SignatureImage()

unsigned int SignatureImage(Image image)

SignatureImage() computes a message digest from an image pixel stream with an
implementation of the NIST SHA-256 Message Digest algorithm. This signature
uniquely identifies the image and is convenient for determining whether two
images are identical.

A description of each parameter follows:

image The image.

21 C API Methods 139

21.18 Methods to Interactively Animate an Image
Sequence

XAnimateBackgroundImage

void XAnimateBackgroundImage(Displaydisplay, XResourceInfo resource info,
Image image)

XAnimateBackgroundImage() animates an image sequence in the background
of a window.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
image Specifies a pointer to a Image structure returned from ReadImage.

XAnimateImage animate an image in an X window.

Image XAnimateImages(Display display, XResourceInfo resource info, char
argv, const int argc, Image image)

XAnimateImages() displays an image via X11.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
argv Specifies the application’s argument list.
argc Specifies the number of arguments.
image Specifies a pointer to a Image structure returned from ReadImage.

21.19 Methods to Interactively Display and Edit
an Image

XDisplayBackgroundImage display an image to the background of an X window.

unsigned int XDisplayBackgroundImage(Display display, XResourceInfo
resource info, Image image)

XDisplayBackgroundImage() displays an image in the background of a window.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
image Specifies a pointer to a Image structure returned from ReadImage.

140 ImageMagick

XDisplayImage display an image on an X window.

Image XDisplayImage(Display display, XResourceInfo resource info, char
argv, int argc, Image image, unsigned long state)

XDisplayImage() displays an image via X11. A new image is created and re-
turned if the user interactively transforms the displayed image.

A description of each parameter follows:

display Specifies a connection to an X server returned from XOpenDisplay.
resource info Specifies a pointer to a X11 XResourceInfo structure.
argv Specifies the application’s argument list.
argc Specifies the number of arguments.
image The image.

21.20 Methods to Get or Set Image Pixels

AcquirePixelCache() acquire image pixels.

PixelPacket AcquirePixelCache(Image image, const int x, const int y, const
unsigned long columns, const unsigned long rows, ExceptionInfo �
exception)

AcquirePixelCache() acquires pixels from the in-memory or disk pixel cache as
defined by the geometry parameters. A pointer to the pixels is returned if the
pixels are transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of
exception Return any errors or warnings in this structure. pixels.

GetIndexes() get indexes.

IndexPacket GetIndexes(const Image image)

GetIndexes() returns the colormap indexes associated with the last call to the
SetPixelCache() or GetPixelCache() methods.

A description of each parameter follows:

image The image.

21 C API Methods 141

GetOnePixel() get one pixel from cache.

PixelPacket GetOnePixel(const Image image, const int x, const int y)

GetOnePixelFromCache() returns a single pixel at the specified(x, y) location.
The image background color is returned if an error occurs.

A description of each parameter follows:

image The image.
x, y These values define the location of the pixel to return.

GetPixelCache() get pixels from cache.

PixelPacket GetPixelCache(Image image, const int x, const int y, const un-
signed long columns, const unsigned long rows)

GetPixelCache() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of pixels.

SetPixelCache() set pixel cache.

PixelPacket SetPixelCache(Image image, const int x, const int y, const un-
signed long columns, const unsigned long rows)

SetPixelCache() allocates an area to store image pixels as defined by the region
rectangle and returns a pointer to the area. This area is subsequently transferred
from the pixel cache with method SyncPixelCache. A pointer to the pixels is
returned if the pixels are transferred, otherwise a NULL is returned.

A description of each parameter follows:

image The image.
x, y, columns, rows These values define the perimeter of a region of pixels.

142 ImageMagick

SyncPixelCache() synchronize pixel cache.

unsigned int SyncPixelCache(Image image)

SyncPixelCache() saves the image pixels to the in-memory or disk cache. The
method returns True if the pixel region is synced, otherwise False.

A description of each parameter follows:

image The image.

21.21 ImageMagick Cache Views Methods

CloseCacheView close cache view.

void CloseCacheView(ViewInfo view)

CloseCacheView() closes the specified view returned by a previous call to Open-
CacheView().

A description of each parameter follows:

view The address of a structure of type ViewInfo.

GetCacheView get cache view.

PixelPacket GetCacheView(ViewInfo view, const int x, const int y, const
unsigned long columns, const unsigned long rows)

GetCacheView() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

view The address of a structure of type ViewInfo.
x, y, columns, rows These values define the perimeter of a region of pixels.

GetCacheViewIndexes get cache view indexes.

IndexPacket GetCacheViewIndexes(const ViewInfo view)

GetCacheViewIndexes() returns the colormap indexes associated with the spec-
ified view.

A description of each parameter follows:

view The address of a structure of type ViewInfo.

21 C API Methods 143

GetCacheViewPixels get cache view.

PixelPacket GetCacheViewPixels(const ViewInfo view)

GetCacheViewPixels() returns the pixels associated with the specified specified
view.

A description of each parameter follows:

view The address of a structure of type ViewInfo.

OpenCacheView open a cache view.

ViewInfo OpenCacheView(Image image)

OpenCacheView() opens a view into the pixel cache.

A description of each parameter follows:

image The image.

SetCacheView set a cache view.

PixelPacket SetCacheView(ViewInfo view, const long x, const long y, const
unsigned long columns, const unsigned long rows)

SetCacheView() gets pixels from the in-memory or disk pixel cache as defined
by the geometry parameters. A pointer to the pixels is returned if the pixels are
transferred, otherwise a NULL is returned.

A description of each parameter follows:

view The address of a structure of type ViewInfo.
x, y, columns, rows These values define the perimeter of a region of pixels.

SyncCacheView synchronize a cache view.

unsigned int SyncCacheView(ViewInfo view)

SyncCacheView() saves the view pixels to the in-memory or disk cache. The
method returns True if the pixel region is synced, otherwise False.

A description of each parameter follows:

view The address of a structure of type ViewInfo.

144 ImageMagick

21.22 Image Pixel FIFO

ReadStream() read a stream.

unsigned int ReadStream(const ImageInfo image info, void (Stream)(const
Image , const void , const size t), ExceptionInfo exception)

ReadStream() makes the image pixels available to a user supplied callback method
immediately upon reading a scanline with the ReadImage() method.

A description of each parameter follows:

image info The image info.
stream A callback method.
exception Return any errors or warnings in this structure.

WriteStream() write a stream.

unsigned int WriteStream(const ImageInfo image info, Image , int(Stream)
(const Image , const void , const size t))

WriteStream() makes the image pixels available to a user supplied callback
method immediately upon writing pixel data with the WriteImage() method.

A description of each parameter follows:

image info The image info.
stream A callback method.

21.23 Methods to Read or Write Binary Large
Objects

BlobToImage() convert a blob to an image.

Image BlobToImage(const ImageInfo image info, const void blob, const
size t length, ExceptionInfo exception)

BlobToImage() implements direct to memory image formats. It returns the blob
as an image.

A description of each parameter follows:

image info The image info.
blob The address of a character stream in one of the image formats understood

by ImageMagick.
length This size t integer reflects the length in bytes of the blob.
exception Return any errors or warnings in this structure.

21 C API Methods 145

DestroyBlobInfo() destroy a blob.

void DestroyBlobInfo(BlobInfo blob)

DestroyBlobInfo() deallocates memory associated with an BlobInfo structure.

A description of each parameter follows:

blob Specifies a pointer to a BlobInfo structure.

GetBlobInfo() initialize a blob.

void GetBlobInfo(BlobInfo blob)

GetBlobInfo() initializes the BlobInfo structure.

A description of each parameter follows:

blob Specifies a pointer to a BlobInfo structure.

ImageToBlob() convert image to a blob.

void ImageToBlob(const ImageInfo image info, Image image, size t length,
ExceptionInfo exception)

ImageToBlob() implements direct to memory image formats. It returns the im-
age as a blob and its length. The magick member of the Image structure deter-
mines the format of the returned blob(GIG, JPEG, PNG, etc.).

A description of each parameter follows:

image info Specifies a pointer to an ImageInfo structure.
image The image.
length This pointer to a size t integer sets the initial length of the blob. On

return, it reflects the actual length of the blob.
exception Return any errors or warnings in this structure.

21.24 ImageMagick Registry Methods

DeleteMagickRegistry delete a blob from the registry.

unsigned int DeleteMagickRegistry(const long id)

146 ImageMagick

DeleteMagickRegistry() deletes an entry in the registry as defined by the id. It
returns True if the entry is deleted otherwise False if no entry is found in the
registry that matches the id.

A description of each parameter follows:

id The registry id.

GetImageFromMagickRegistry get an image from the registry by name.

Image GetImageFromMagickRegistry(const char *name, ExceptionInfo *ex-
ception)

GetImageFromMagickRegistry() gets an image from the registry as defined by
its name. If the blob that matches the name is not found, NULL is returned.

A description of each parameter follows:

name The image name.
exception Return any errors or warnings in this structure.

GetMagickRegistry get a blob from the registry.

const void GetMagickRegistry(const long id,RegistryType type, size t *length,
ExceptionInfo *exception)

GetMagickRegistry() gets a blob from the registry as defined by the id. If the
blob that matches the id is not found, NULL is returned.

A description of each parameter follows:

id The registry id.
type The registry type.
length The blob length in number of bytes.
exception Return any errors or warnings in this structure.

SetMagickRegistry save a blob to the registry.

long SetMagickRegistry(const void blob,const size t length, ExceptionInfo
*exception)

SetMagickRegistry() sets a blob into the registry and returns a unique ID. If an
error occurs, -1 is returned.

A description of each parameter follows:

21 C API Methods 147

type The registry type.
blob The address of a Binary Large OBject.
length The blob length in number of bytes.
exception Return any errors or warnings in this structure.

21.25 Methods to Read or List ImageMagick
Image formats

DestroyMagickInfo() destroy magick info.

void DestroyMagickInfo()

DestroyMagickInfo() deallocates memory associated MagickInfo list.

GetImageMagick() return an image format that matches the magic number.

char GetImageMagick(const unsigned char magick, const size t length)

Method GetImageMagick searches for an image format that matches the speci-
fied magick string. If one is found the tag is returned otherwise NULL.

A description of each parameter follows:

magick The image format we are searching for.
length The length of the binary string.

GetMagickConfigurePath() get the path of a configuration file.

char GetMagickConfigurePath(const char filename)

GetMagickConfigurePath() searches a number of pre-defined locations for the
specified ImageMagick configuration file and returns the path. The search order
follows:

<current directory>/
<client path>/
$MAGICK_HOME/
$HOME/.magick/
MagickLibPath
MagickModulesPath
MagickSharePath

A description of each parameter follows:

filename The desired configuration file.

148 ImageMagick

GetMagickInfo() get image format attributes.

MagickInfo GetMagickInfo(const char tag)

GetMagickInfo() returns a pointer MagickInfo structure that matches the speci-
fied tag. If tag is NULL, the head of the image format list is returned.

A description of each parameter follows:

tag The image format we are looking for.
exception Return any errors or warnings in this structure.

GetMagickVersion() get the ImageMagick version.

char GetMagickVersion(unsigned int version)

GetMagickVersion() returns the ImageMagick API version as a string and as a
number.

A description of each parameter follows:

version The ImageMagick version is returned as a number.

InitializeMagick() initialize the ImageMagick API.

InitializeMagick(const char path)

InitializeMagick() initializes the ImageMagick environment.

A description of each parameter follows:

path The execution path of the current ImageMagick client.

ListMagickInfo() list the recognized image formats.

void ListMagickInfo(FILE file)

ListMagickInfo() lists the image formats to a file.

A description of each parameter follows:

file A file handle.
exception Return any errors or warnings in this structure.

21 C API Methods 149

RegisterMagickInfo() register a new image format.

MagickInfo RegisterMagickInfo(MagickInfo entry)

RegisterMagickInfo() adds attributes for a particular image format to the list of
supported formats. The attributes include the image format tag, a method to read
and/or write the format, whether the format supports the saving of more than one
frame to the same file or blob, whether the format supports native in-memory
I/O, and a brief description of the format.

A description of each parameter follows:

entry The magick info.

SetMagickInfo()

MagickInfo SetMagickInfo(const char tag)

Method SetMagickInfo allocates a MagickInfo structure and initializes the mem-
bers to default values.

A description of each parameter follows:

tag a character string that represents the image format associated with the Mag-
ickInfo structure.

UnregisterMagickInfo()

unsigned int UnregisterMagickInfo(const char tag)

Method UnregisterMagickInfo removes a tag from the magick info list. It returns
False if the tag does not exist in the list otherwise True.

A description of each parameter follows:

tag a character string that represents the image format we are looking for.

21.26 ImageMagick Error Methods

CatchImageException()

CatchImageException(Image image)

150 ImageMagick

CatchImageException() returns if no exceptions are found in the image sequence,
otherwise it determines the most severe exception and reports it as a warning or
error depending on the severity.

A description of each parameter follows:

image An image sequence.

DestroyExceptionInfo() destroy exception info.

void DestroyExceptionInfo(ExceptionInfo exception)

DestroyExceptionInfo() deallocates memory associated with exception.

A description of each parameter follows:

exception The exception info.

GetExceptionInfo get exception info.

GetExceptionInfo(ExceptionInfo exception)

GetExceptionInfo() initializes exception to default values.

A description of each parameter follows:

exception The exception info.

GetImageException() get the severest error.

GetImageException(Image image, ExceptionInfo exception)

GetImageException() traverses an image sequence and returns any error more
severe than noted by the exception parameter.

A description of each parameter follows:

image An image sequence.
exception Return the highest severity exception in the seqeunce.

21 C API Methods 151

MagickError() declare an error.

void MagickError(const ExceptionType error, const char reason, const char
description)

MagickError() calls the error handler method with an error reason.

A description of each parameter follows:

exception The error severity.
reason Define the reason for the error.
description Describe the error.

MagickWarning() declare a warning.

void MagickWarning(const ExceptionType warning, const char reason, const
char description)

MagickWarning() calls the warning handler method with a warning reason.

A description of each parameter follows:

warning The warning severity.
reason Define the reason for the warning.
description Describe the warning.

SetErrorHandler() set the warning handler.

ErrorHandler SetErrorHandler(ErrorHandler handler)

SetErrorHandler() sets the error handler to the specified method and returns the
previous error handler.

A description of each parameter follows:

handler The method to handle errors.

SetWarningHandler() set the warning handler.

ErrorHandler SetWarningHandler(ErrorHandler handler)

SetWarningHandler() sets the warning handler to the specified method and re-
turns the previous warning handler.

A description of each parameter follows:

handler The method to handle warnings.

152 ImageMagick

ThrowException() throw an exception.

void ThrowException(ExceptionInfoexception, const ExceptionType sever-
ity, const char reason, const char description)

ThrowException() throws an exception with the specified severity code, reason,
and optional description.

A description of each parameter follows:

exception The exception.
severity Define the severity of the exception.
reason Define the reason for the exception.
description Describe the exception.

21.27 ImageMagick Memory Allocation Methods

AcquireMemory allocate memory.

void AcquireMemory(const size t size)

AcquireMemory() returns a pointer to a block of memory at least size bytes
suitably aligned for any use.

A description of each parameter follows:

size The size of the memory in bytes to allocate.

LiberateMemory free allocated memory.

void LiberateMemory(void memory)

LiberateMemory() frees memory that has already been allocated.

A description of each parameter follows:

span A pointer to a block memory to free for reuse.

ReacquireMemory change the size of allocated memory.

void ReacquireMemory(void memory, const size t size)

21 C API Methods 153

ReacquireMemory() changes the size of allocated memory and returns a pointer
to the (possibly moved) block. The contents will be unchanged up to the lesser
of the new and old sizes.

A description of each parameter follows:

memory A pointer to a memory allocation. On return the pointer may change
but the contents of the original allocation will not.

size The new size of the allocated memory.

21.28 ImageMagick Progress Monitor Methods

MagickMonitor measure progress toward completion of a task.

void MagickMonitor(const char text, const off t quantum, const off t span)

MagickMonitor() calls the monitor handler method with a text string that de-
scribes the task and a measure of completion.

A description of each parameter follows:

quantum The position relative to the span parameter which represents how
much progress has been made toward completing a task.

span The span relative to completing a task.

SetMonitorHandler define a custom progress monitor.

MonitorHandler SetMonitorHandler(MonitorHandler handler)

SetMonitorHandler() sets the monitor handler to the specified method and re-
turns the previous monitor handler.

A description of each parameter follows:

handler The progress monitor handler method.

22 C++ API Methods

154

23 Perl API Methods

23.1 Image::Magick Attributes

An image has certain attributes associated with it such as width, height, number
of colors in the colormap, page geometry, and others. Many of the image meth-
ods allow you to set relevant attributes directly in the method call, or you can
use Set(), as in:

$image->Set(loop=>100);
$image->[$x]->Set(dither=>1);

To get an imageattribute, use Get():

($width, $height, $depth) = $image->Get(’width’, ’height’, ’depth’);
$colors = $image->[2]->Get(’colors’);

The methods GetAttribute() and SetAttribute() are aliases for Get() and Set() and
may be used interchangeably.

Following is a list of image attributes acceptable to either Set() or Get() as noted.

adjoin join images into a single multi-image file.

$image- � Set(adjoin= � boolean)
$image- � Get(’adjoin’)

Certain file formats accept multiple images within a single file (e.g. a GIF ani-
mation). If adjoin is value other than 0 and the image is a multi-image format,
multiple reads to the same image object will join the images into a single file
when you call the Write() method. Set adjoin to 0 if you do not want the
images output to a single file.

155

156 ImageMagick

antialias remove pixel aliasing.

$image- � Set(antialias= � boolean)
$image- � Get(’antialias’)

The visible effect of antialias is to blend the edges of any text or graphics with
the image background. This attribute affects how text and graphics are rendered
when certain image formats are read (e.g. Postscript or SVG) or when certain
Image::Magick methods are called (e.g. Annotate() or Draw()).

background image background color.

$image- � Set(background= � color-name)
$image- � Get(’background’)

This attribute sets (or gets) the background color of an image. Image formats
such as GIF, PICT, PNG, and WMF retain the background color information.

base-filename base image filename (before transformations).

$image- � Get(’base-filename”)

The original filename is returned as a string.

base-height base image height (before transformations).

$image- � Get(’base-height”)

This attribute returns the original height of image before any resizing operation.

base-width base image width (before transformations).

$image- � Get(’base-width”)

This attribute returns the original width of image before any resizing operation.

blue-primary chromaticity blue primary point.

$image- � Set(blue-primary= � x-value,y-value)
$image- � Get(’blue-primary’)

This attribute sets or returns the chromaticity blue primary point. This is a color
management option.

23 Perl API Methods 157

cache-threshold cache threshold.

$image- � Set(cache-threshold= � integer)
$image- � Get(’cache-threshold’)

Image pixels are stored in your computer’s memory until it has been consumed
or the cache threshold is exceeded. Subsequent pixel operations are cached to
disk. Operations to memory are significantly faster, but if your computer does
not have a sufficient amount of free memory to read or transform an image, you
may need to set this threshold to a small megabyte value (e.g. 32). Use 0 to cache
all images to disk.

clip-mask associate a clip mask with the image.

$image- � Set(’clip-mask’= � image)

Clip-mask associates a clip mask with the image.

class image class.

$image- � Get(’class’)

A Direct class image is a continuous tone image and is stored as a sequence
of red-green-blue and optional opacity intensity values. A Pseudo class image
is an image with a colormap, where the image is stored as a map of colors and a
sequence of indexes into the map.

colormap color of a particular colormap entry.

$image- � Set(’colormap[$i]’= � color-name)
$image- � Get(’colormap[$i]’)

This attribute returns the red, green, blue, and opacity values at colormap posi-
tion $i. You can set the color with a colorname (e.g. red) or color hex value (e.g.
#ccbdbd).

colors number of distinct colors in the image.

$image- � Get(’colors’)

This attribute returns the number of distinct colors in the image.

158 ImageMagick

comment image comment.

$image- � Get(’comment’)

Set or return the image comment.

compression type of compression.

$image- � Set(compression= � string)
$image- � Get(’compression’)

Compression defaults to the compression type of the image when it was first
read. The value of compression can be one of the following:

None BZip Fax
Group4 JPEG LosslessJPEG
LZW RLE Zip

If you set a compression type that is incompatible with the output file type,
a compatible compression value is used instead (e.g. a PNG image ignores a
compression value of JPEG and saves with Zip compression).

delay interframe delay.

$image- � Set(delay= � integer)
$image- � Get(’delay’)

Delay regulates the playback speed of a sequence of images. The value is the
number of hundredths of a second that must pass before displaying the next
image. The default is 0 which means there is no delay and the animation will
play as fast as possible.

density image resolution.

$image- � Set(density= � geometry)
$image- � Get(’density’)

This attribute to set the vertical and horizontal resolution of an image. Use at-
tribute units to define the units of resolution. The default is 72 dots-per-inch.

23 Perl API Methods 159

depth color component depth.

$image- � Get(’depth’)

Return the color component depth of the image, either 8 or 16. A depth of 8
represents color component values from 0 to 255 while a depth of 16 represents
values from 0 to 65535.

directory thumbnail names of an image montage.

$image- � Get(’directory’)

A montage is one or more image thumbnails regularly spaced across a color
or textured background created by the Montage() method or montage program.
Directory returns the filenames associated with each thumbnail.

dispose GIF disposal method.

$image- � Set(dispose= � 0, 1, 2, 3)
$image- � Get(’dispose’)

The dispose attribute sets the GIF disposal method that defines how an image
is refreshed when flipping between scenes in a sequence. The disposal methods
are defined as:

0 replace one full-size, non-transparent frame with another
1 any pixels not covered up by the next frame continue to display
2 background color or background tile shows through transparent pixels
3 restore to the state of a previous, undisposed frame

dither apply dithering to the image.

$image- � Set(dither= � boolean)
$image- � Get(’dither’)

Color reduction is performed implicitly when an image is converted from a file
format that allows many colors to one that allows fewer (e.g. JPEG to GIF).
Dithering helps smooth out the apparent contours produced when sharply reduc-
ing colors. The default is to dither an image during color reduction.

160 ImageMagick

error mean error per pixel.

$image- � Get(’error’)

This value reflects the mean error per pixel introduced when reducing the num-
ber of colors in an image either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many

colors to one that allows fewer (e.g. JPEG to GIF).

The mean error gives one measure of how well the color reduction algorithm
performed and how similiar the color reduced image is to the original.

file Perl filehandle.

$image- � Set(file= � filehandle)
$image- � Get(’file’)

The Read() and Write() methods accept an already opened Perl filehandle and
the image is read or written directly from or to the specified filehandle.

filename filename of image.

$image- � Set(filename= � string)
$image- � Get(’filename’)

The default filename is the name of the file from which the image was read.
Write() accepts a filename as a parameter, however, if you do not specify one, it
uses the name defined by the filename attribute. For example:

$image->Read(’logo.gif’);
$image->Write(); # write image as logo.gif
$image->Set(filename=>’logo.png’);
$image->Write(); # write image as logo.png

filesize size of file in bytes.

$image- � Get(’filesize’)

Returns the number of bytes the image consumes in memory or on disk.

23 Perl API Methods 161

font text font.

$image- � Set(font= � string)
$image- � Get(’filesize’)

Both Annotate() and Draw() require a font to render text to an image. A font
can be Truetype (Arial.ttf), Postscript (Helvetica), or a fully-qualified X11 font
(-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*) name.

format descriptive image format.

$image- � Get(’format’)

Attribute magick returns the abbreviated image format (e.g. JPEG) while format
returns more descriptive text about the format (e.g. Joint Photographic Experts
Group JFIF format).

fuzz close colors are treated as equal.

$image- � Set(fuzz= � integer)
$image- � Get(’fuzz’)

A number of image methods (e.g. ColorFloodfill()) compare a target color to a
color within the image. By default these colors must match exactly. However, in
many cases two colors may differ by a small amount. Fuzz defines how much
tolerance is acceptable to consider two different colors as the same. For example,
set fuzz to 10 and the color red at intensities of 100 and 102 respectively are
now interpreted as the same color.

gamma image gamma.

$image- � Set(gamma= � float)
$image- � Get(’gamma’)

Set or return the image gamma value. Unlike Gamma() that actually applies the
gamma value to the image pixels, here we just set the value. This is useful if the
correct gamma is already known about a particular image.

geometry shortcut for specifying width and height.

$image- � Set(geometry= � geometry)
$image- � Get(’geometry’)

162 ImageMagick

The geometry attribute is a convenient way to specify the width, height, and
any offset of an image region as a single string. For example,

geometry=>’640x80’

is equivalent to:

width=>640, height=>480

To refer to a 20 x 20 region of pixels starting at coordinate (100, 150), use:

geometry=>’20x20+100+150’

compression type of gravity.

$image- � Set(gravity= � string)
$image- � Get(’compression’)

Gravity defaults to NorthWest. The value of gravity can be one of the
following:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

green-primary chromaticity green primary point.

$image- � Set(green-primary= � x-value,y-value)
$image- � Get(’green-primary’)

This attribute sets or returns the chromaticity green primary point. This is a color
management option.

height image height.

$image- � Get(’height’)

This attribute returns the height (in pixel rows) of the image.

23 Perl API Methods 163

index colormap index at a particular pixel location.

$image- � Set(’index[$x, $y]’= � color-name)
$image- � Get(’index[$x, $y]’)

This attribute sets or returns the colormap index at position ($x, $y). The result
is undefined if the image does not have a colormap or the specified location lies
outside the the image area.

ICM color information profile.

$image- � Get(’ICM’)

This attribute returns the color information profile.

id ImageMagick registry ID.

$image- � Get(’id’)

This attribute returns the ImageMagick registry ID. The registry allows for per-
sistent images that can later be referenced as a filename (e.g.registry:0xbd).

interlace type of interlacing scheme.

$image- � Set(interlace= � string)
$image- � Get(’interlace’)

The interlace attribute allows you to specify the interlacing scheme used
by certain image formats such as GIF, JPEG, RGB, and CMYK. The default is
None but can be any of the following:

None no interlacing
Line scanline interlacing
Plane plane interlacing
Partition partition interlacing

IPTC newswire information profile.

$image- � Get(’IPTC’)

This attribute returns the newswire information profile.

164 ImageMagick

label image label.

$image- � Set(label= � string)
$image- � Get(’label’)

Use labels to optionally annotate a Postscript or PDF image or the thumbnail
images of a montage created by the Montage() method or montage program.
A label can include any of the special formatting characters described in the
Comment() method description.

loop add loop extension to your image sequence.

$image- � Set(label= � integer)
$image- � Get(’loop’)

The loop attribute adds the Netscape looping extension to an image sequence.
A value of 0 causes the animation sequence to loop continuously. Any other
value results in the animation being repeated for the specified number of times.
The default value is 1.

magick image file format.

$image- � Set(magick= � string)
$image- � Get(’magick’)

The default image format is whatever format the image was in when it was read.
Write() accepts an image format as a parameter, however, if you do not specify
one, it uses the format defined by the magick attribute. For example:

$image->Read(’logo.gif’);
$image->Write(); # write image as GIF
$image->Set(magick=>’PNG’);
$image->Write(); # write image as PNG

matte transparency boolean.

$image- � Set(matte= � boolean)
$image- � Get(’magick’)

Some images have a transparency mask associated with each pixel ranging from
opaque (pixel obscures background) to fully transparent (background shows
thru). The transparency mask, if it exists, is ignored if the matte attribute is
0 and all pixels are treated as opaque.

23 Perl API Methods 165

maximum-error normalized maximum mean error per pixel.

$image- � Get(’maximum-error’)

This value reflects the normalized maximum per pixel introduced when reducing
the number of colors in an image either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many

colors to one that allows fewer (e.g. JPEG to GIF).

The normalized maximum error gives one measure of how well the color re-
duction algorithm performed and how similiar the color reduced image is to the
original.

mean-error normalized mean mean error per pixel.

$image- � Get(’mean-error’)

This value reflects the normalized mean per pixel introduced when reducing the
number of colors in an image either implicitedly or explicitly:

1. Explicitly, when you use the Quantize() method.
2. Implicitly, when an image is converted from a file format that allows many

colors to one that allows fewer (e.g. JPEG to GIF).

The normalized mean error gives one measure of how well the color reduction
algorithm performed and how similiar the color reduced image is to the original.

montage tile size and offset within an image montage.

$image- � Get(’montage’)

A montage is one or more image thumbnails regularly spaced across a color or
textured background returned by the Montage() method or montage program.
The montage attribute returns the geometry of the region associated with each
image thumbnail (e.g. 160x120+10+10). This information is useful for creating
image maps for dynamic web pages.

166 ImageMagick

page perferred size and location of the image canvas.

$image- � Set(page= � string)
$image- � Get(’page’)

Page declares the image canvas size and location. Typically this is only useful
for the Postscript, text, and GIF formats. The value of string can be:

Letter Tabloid Ledger
Legal Statement Executive
A3 A4 A5
B4 B5 Folio
Quarto 10x14

or a geometry (612x792). The default value is Letter.

pointsize pointsize of a font.

$image- � Set(pointsize= � integer)
$image- � Get(’pointsize’)

The pointsize attribute determines how large to draw a Postscript or True-
Type font with the Annotate() or Draw() methods. The default is 12.

preview type of image preview.

$image- � Set(preview= � string)
$image- � Get(’preview’)

Set or get the type of preview for the Preview image format.

Rotate Shear Roll
Hue Saturation Brightness
Gamma Spiff Dull
Grayscale Quantize
Despeckle ReduceNoise
AddNoise Sharpen Blur
Threshold EdgeDetect
Spread Solarize Shade
Raise Segment Swirl
Implode Wave OilPaint
CharcoalDrawing JPEG

Suppose we want to determine an ideal gamma setting for our image:

$image->Write(filename=>’model.png’,preview=>’Gamma’);
$image->Display();

23 Perl API Methods 167

quality compression level.

$image- � Set(quality= � integer)
$image- � Get(’quality’)

The quality attribute sets the JPEG, MIFF, or PNG compression level. The range
is 0 (worst) to 100 (best). The default is 75.

Quality is a trade-off between image size and compression speed for the MIFF
and PNG formats. The higher the quality, the smaller the resulting image size
but with a requisite increase in compute time. The JPEG trade-off is between
image size and image appearance. A high quality returns an image nearly free
of compression artifacts but with a larger image size. If you can accept a lower
quality image appearance, the resulting image size would be considerably less.

red-primary chromaticity red primary point.

$image- � Set(red-primary= � x-value,y-value)
$image- � Get(’red-primary’)

This attribute sets or returns the chomaticity red primary point. This is a color
management option.

rendering-intent intended rendering model.

$image- � Set(rendering-intent= � string)
$image- � Get(’rendering-intent’)

This is a color management option. Choose from these models:

Undefined Saturation Perceptual
Absolute Relative

scene image scene number.

$image- � Set(scene= � integer)
$image- � Get(’scene’)

By default each image in a sequence has a scene number that starts at 0 and
each subsequent image in the sequence increments by 1. Use scene to reset
this value to whatever is appropriate for your needs.

168 ImageMagick

signature SHA-256 message digest.

$image- � Get(’signature’)

Retrieves the SHA-256 message digest associated with the image. A signature
is generated across all the image pixels. If a single pixel changes, the signature
will change as well. The signature is mostly useful for quickly determining if
two images are identical or if an image has been modified.

size width and height of a raw image.

$image- � Set(size= � geometry)
$image- � Get(’size’)

Set the size attribute before reading an image from a raw data file format such
as RGB, GRAY, TEXT, or CMYK (e.g. 640x480) or identify a desired resolution
for Photo CD images (e.g. 768x512).

$image->Set(size=>’640x480’);
$image->Read(’gray:protein’);

server X server to contact.

$image- � Set(server= � string)
$image- � Get(’server’)

Display(), Animate(), or any X11 font use with Annotate() require contact with
an X server. Use server to specify which X server to contact (e.g.mysever:0).

taint pixel change boolean.

$image- � Get(’taint’)

Taint returns a value other than 0 if any image pixel has modified since it was
first read.

texture name of texture to tile.

$image- � Set(texture= � string)
$image- � Get(’texture’)

The texture attribute assigns a filename of a texture to be tiled onto the image
background when any TXT or WMF image formats are read.

23 Perl API Methods 169

type image type.

$image- � Set(type= � string)
$image- � Get(’type’)

The image type can be any of the following

Bilevel Grayscale GrayscaleMatte
Palette PaletteMatte TrueColor
TrueColorMatte ColorSeparation ColorSeparationMatte
Optimize

When getting this attribute, the value reflects the type of image pixels. For ex-
ample a colormapped GIF image would most likely return Palette as the image
type. You can also force a particular type with Set(). For example if you want to
force your color image to black and white, use:

$image->Set(type=>’Bilevel’);

units units of resolution.

$image- � Set(units= � string)
$image- � Get(’units’)

Return or set the units in which the image’s resolution are defined. Values may
be:

Undefined
pixels/inch
pixels/centimeter

verbose print details.

$image- � Set(units= � boolean)
$image- � Get(’units’)

When set, verbose causes some image operations to print details about the
operation as it progresses.

white-point chromaticity white point.

$image- � Set(white-point= � x-value,y-value)
$image- � Get(’white-point’)

This attribute sets or returns the chomaticity white point. This is a color man-
agement option.

170 ImageMagick

width image width.

$image- � Get(’width’)

Returns the width (integer number of pixel columns) of the image.

x-resolution horizontal resolution.

$image- � Get(’x-resolution’)

Returns the x resolution of the image in the units defined by the units attribute
(e.g. 72 pixels/inch). Use the density attribute to change this value.

y-resolution vertical resolution.

$image- � Get(’y-resolution’)

Returns the y resolution of the image in the units defined by the units attribute
(e.g. 72 pixels/inch). Use the density attribute to change this value.

23.2 Image::Magick Methods

AddNoise() add noise to an image.

$image- � AddNoise(noise= � string)

This method adds random noise to the image, where string specifies one of the
following types:

Uniform Gaussian Multiplicative
Impulse Laplacian Poisson

Animate() animate an image sequence.

$image- � Animate()

Animate() repeatedly displays an image sequence to any X window screen. This
method accepts the same parameters as Set() as described in section 23.1.

23 Perl API Methods 171

Annotate() annotate an image with text.

$image- � Annotate(text= � string, antialias= � boolean, box= � color-name,
density= � geometry, fill= � color-name, family= � string, font= � string,
geometry= � geometry, gravity= � string, pointsize= � integer, rotate= � rotate-
angle, scale= � sx, sy, skewX= � skew-angle, skewY= � skew-angle, stroke= � color-
name, strokewidth= � integer, stretch= � string, style= � string, translate= � tx,
ty, weight= � string, x= � integer, y= � integer)

Annotate() allows you to scribble text across an image. The text may be repre-
sented as a string or filename. Precede the filename with an ”at” sign (@) and the
contents of the file are drawn on the image. You can affect how text is drawn by
specifying one or more of the following parameters:

antialias The visible effect of antialias is to smooth out the rounded corners of
text characters. Set to 0 to keep crisp edges.

box By default text is blended with the image background. Set the box color to
give a uniform background to your text of the color you choose.

density Set the vertical and horizontal resolution of the font. The default is 72
pixels/inch.

family font family.
fill The fill color paints any areas inside the outline of the text.
font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified

X11 font (-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*).
geometry Geometry defines the baseline position where text is rendered (e.g.

+100+50).
gravity Gravity affects how the text is rendered relative to the (x, y) baseline po-

sition. By default gravity is NorthWest which renders text above the baseline
position. Choose from these gravities:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

pointsize The font pointsize. The default is 12.
rotate Specifies a rotation by the specified number of degrees about a given

point.
scale Specifies a scale operation by sx and sy.
skewX Specifies a skew transformation along the x-axis.
skewY Specifies a skew transformation along the y-axis.
stretch font stretch. Choose from these stretches:

Normal UltraCondensed ExtraCondensed
Condensed SemiCondensed SemiExpanded
Expanded ExtraExpanded UltraExpanded

stroke A stroke color paints along the outline of the text.

172 ImageMagick

strokewidth The width of the stroke on the text. A zero value causes no stroke
to be painted.

style font style. Choose from these styles:

Normal Italic Oblique
Any

translate Specifies a translation by tx and ty.
x Specifies the x baseline position of the text.
y Specifies the y baseline position of the text.

Append() append a set of images.

$image- � Append(stack= � boolean)

The Append() method takes a set of images and appends them to each other.
Append() returns a single image where each image in the original set is side-by-
side. If the stack parameter is True, the images are stacked top-to-bottom.

$append = $image->Append();

Average() average a set of images.

$image- � Average()

The Average() method takes a set of images and averages them together. Each
image in the set must have the same width and the same height. Average() re-
turns a single image with each corresponding pixel component of each image
averaged.

BlobToImage() return an image from a Binary Large OBject.

$image- � BlobToImage(blob)

Read() returns an image from a file on disk, whereas, BlobToImage() performs
the same function if the image format is stored in memory:

@blob = $db->GetImage(); # get blob from database
$image = Image::Magick->New(magick=>’jpg’);

the blob is a JPEG image
$image->BlobToImage(@blob); # convert blob to Image::Magick object

23 Perl API Methods 173

Blur() blur the image.

$image- � Blur(geometry= � geometry, radius= � float, sigma= � float)

Blur() blurs an image. We convolve the image with a Gaussian operator of the
given radius and standard deviation (sigma). For reasonable results, the radius
should be larger than sigma. Use a radius of 0 and Blur() selects a suitable radius
for you. Geometry represents radius x sigma as one parameter (e.g. 0x1).

Border() frame the image with a border.

$image- � Border(geometry= � geometry,width= � integer, height= � integer,
fill= � color-name)

This method surrounds the image with a border of the specified color. Geometry
represents width x height as one parameter (e.g. 10x5).

Channel() extract a channel from the image.

$image- � Channel(channel= � string);

Extract a channel from the image. A channel is a particular color component of
each pixel in the image. Choose from these components:

Red
Cyan
Green
Magenta
Blue
Yellow
Opacity
Black

Charcoal() special effect filter.

$image- � Charcoal(geometry= � geometry, radius= � float, sigma= � float)

Charcoal() is a special effect filter that simulates a charcoal drawing. We con-
volve the image with a Gaussian operator of the given radius and standard devi-
ation (sigma). For reasonable results, radius should be larger than sigma. Use a
radius of 0 and Charcoal() selects a suitable radius for you. Geometry repre-
sents radius x sigma as one parameter (e.g. 0x1).

174 ImageMagick

Chop() chop an image.

$image- � Chop(geometry= � geometry, width= � integer, height= � integer,
x= � integer, y= � integer)

Chop() removes a region of an image and collapses the image to occupy the re-
moved portion. Columnsx throughx+width and the rows y throughy+height
are chopped. Use Geometry as a shortcut for width x height + x + y (e.g.
100x50+10+20).

Clone() create a new copy of an image.

$image- � Clone()

The Clone() method copies a set of images and returns the copy as a new image
object. For example

$clone = $image=>Clone();

copies all of the images from $image to $clone.

Coalesce() coalesce a set of images.

$image- � Coalesce()

This method composites a set of images while respecting any page offsets and
disposal methods. GIF, MIFF, and MNG animation sequences typically start
with an image background and each subsequent image varies in size and off-
set. Coalesce() returns a new sequence where each image in the sequence is the
same size as the first and composited with the next image in the sequence.

ColorFloodfill() floodfill the designed area with color.

$image- � ColorFloodfill(geometry= � geometry, x= � integer, y= � integer, fill= � color-
name, bordercolor= � color-name, fuzz= � float)

ColorFloodfill() changes the color value of any pixel that matches fill and
is an immediate neighbor. If bordercolor is specified, the color value is
changed for any neighbor pixel that is not bordercolor. Use Geometry
as a shortcut for x + y (e.g. +10+20).

By default fill must match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10
and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color for the purposes of the floodfill.

23 Perl API Methods 175

Colorize() colorize an image.

$image- � Colorize(fill= � color-name, opacity= � string)

Colorize() blends the fill color with each pixel in the image. A percentage blend
is specified with opacity. Control the application of different color compo-
nents by specifying a different percentage for each component (e.g. 90/100/10
is 90% red, 100% green, and 10% blue).

Comment() add a comment to an image.

$image- � Comment(comment= � string)

Add a comment to an image. Optionally you can include any of the following bits
of information about the image by embedding the appropriate special characters:

%b file size in bytes.
%c comment.
%d directory in which the image resides.
%e extension of the image file.
%f original filename of the image.
%h height of image.
%i filename of the image.
%k number of unique colors.
%l image label.
%m image file format.
%n number of images in the image sequence.
%o output image filename.
%p page number of the image.
%q image depth (8 or 16).
%s image scene number.
%t image filename without any extension.
%u a unique temporary filename.
%w image width.
%x x resolution of the image.
%y y resolution of the image.
%# SHA-256 message digest.

Given an image whose filename is logo.gif and dimensions of 640 pixels in
width and 480 pixels in height, this statement:

$image->Comment(’%f %m %wx%h’)

generates a comment that reads: logo.gif GIF 640x480.

176 ImageMagick

Composite composite one image to another.

$image- � Composite(image= � image-handle, compose= � string, geometry= � geometry,
x= � integer, y= � integer, gravity= � string, opacity= � =integer, rotate= � float,
tile= � image-handle)

Composite() allows you to overlay one image to another. You can affect how
and where the composite is overlaid by specifying one or more of the following
options:

compose This operator affects how the composite is applied to the image. The
default is Over. Choose from these operators:

Over In Out
Atop Xor Plus
Minus Add Subtract
Difference Bumpmap Copy
Displace

geometry Geometry defines the baseline position where the composite is placed
(e.g. +100+50).

x Specifies the x baseline position of the composite.
y Specifies the y baseline position of the composite.
gravity Gravity affects how the image is placed relative to the (x, y) baseline po-

sition. By default gravity is NorthWest which renders the image just below
the baseline position. Choose from these gravities:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

opacity Blend composite with the image background. Opacity is expressed
as percent transparency.

rotate Rotate image before it is composited, expressed in degrees.
tile A value other than 0 tiles the composite repeatedly across and down the

image.

Contrast() enhance or reduce the image contrast.

$image- � Contrast(sharpen= � boolean)

Contrast() enhances the intensity differences between the lighter and darker ele-
ments of the image. Set sharpen to a value other than 0 to increase the image
contrast otherwise the contrast is reduced.

23 Perl API Methods 177

Convolve() apply a convolution kernel to the image.

$image- � Convolve(coefficients= � array of float values)

Apply a custom convolution kernel to the image. Given a particular kernel order,
you must supply order x order float values. For example, a kernel of order 3
implies 9 values (3x3):

$image->Convolve([1, 2, 1, 2, 4, 2, 1, 2, 1]);

Crop crop an image.

$image- � Crop(geometry= � geometry, width= � integer, height= � integer,
x= � integer, y= � integer)

Crop() extracts a region of the image starting at the offset defined by x and y
and extending for width and height. Geometry is a shorthard method to
define a region. To crop 100 x 50 region that begins at position (10, 20), use

$image->Crop(’100x50+10+20’);

CycleColormap displace a colormap.

$image- � CycleColormap(display= � integer)

CycleColormap() displaces an image’s colormap by a given number of positions.
If you cycle the colormap a number of times you can produce a psychodelic
effect.

Deconstruct return the constituent parts of an image sequence.

$image- � Deconstruct()

Deconstruct() returns a new sequence that consists of the first image in the se-
quence followed by the maximum bounding region of any differences in sub-
sequent images. This method can undo a coalesced sequence returned by Coa-
lesce().

Despeckle filter speckles.

$image- � Despeckle()

Despeckle() reduces the speckle noise in an image while perserving the edges of
the original image.

178 ImageMagick

Display() display image.

$image- � Display(server= � server-name)

Display() displays the image to any X window screen.

Draw annotate an image with a graphic primitive.

$image- � Draw(primitive= � string, antialias= � boolean, bordercolor= � color-
name, density= � geometry, fill= � color-name, font= � string, geometry= � geometry,
method= � string, points= � string, pointsize= � integer, rotate= � rotate-
angle, scale= � sx, sy, skewX= � skew-angle, skewY= � skew-angle stroke= � color-
name, strokewidth= � integer, translate= � tx, ty

Draw() allows you to draw a graphic primitive on your image. The primitive may
be represented as a string or filename. Precede the filename with an ”at” sign (@)
and the contents of the file are drawn on the image. You can affect how text is
drawn by specifying one or more of the following parameters:

primitive The primitive describes the type of graphic to draw. Choose from
these primitives:

Point Line Rectangle
roundRectangle Arc Ellipse
Circle Polyline Polygon
Bezier Path Color
Matte Text Image

antialias The visible effect of antialias is to smooth out the rounded corners of
the drawn shape. Set to 0 to keep crisp edges.

bordercolor The Color primitive with a method of FloodFill changes the color
value of any pixel that matches fill and is an immediate neighbor. If
bordercolor is specified, the color value is changed for any neighbor
pixel that is not fill.

density This parameter sets the vertical and horizontal resolution of the font.
The default is 72 pixels/inch.

fill The fill color paints any areas inside the outline of drawn shape.
font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified

X11 font (-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*).
geometry Geometry defines the baseline position where the graphic primitive

is rendered (e.g. +100+50).
method Primitives Matte and Image behavior depends on the painting method

you choose:

Point Replace Floodfull
FillToBorder Reset

23 Perl API Methods 179

points List one or more sets of coordinates as required by the graphic primitive
you selected.

pointsize The font pointsize. The default is 12.
rotate Specifies a rotation of rotate-angle degrees about a given point.
scale Specifies a scale operation by sx and sy.
skewX Specifies a skew transformation along the x-axis.
skewY Specifies a skew transformation along the y-axis.
stroke A stroke color paints along the outline of the shape.
strokewidth The width of the stroke of the shape. A zero value means no stroke

is painted.
translate Specifies a translation by tx and ty.

Edge detect edges within an image.

$image- � Edge(radius= � float)

Edge() finds edges in an image. Radius defines the radius of the convolution
filter. Use a radius of 0 and Edge() selects a suitable radius for you.

Emboss emboss the image.

$image- � Emboss(geometry= � geometry, radius= � float, sigma= � float)

Emboss() returns a grayscale image with a three-dimensional effect. We con-
volve the image with a Gaussian operator of the given radius and standard devi-
ation (sigma). For reasonable results, radius should be larger than sigma. Use a
radius of 0 and Emboss() selects a suitable radius for you. Geometry represents
radius x sigma as one parameter (e.g. 0x1).

Enhance filter a noisy image.

$image- � Enhance()

Enhance() applies a digital filter that improves the quality of a noisy image.

Equalize equalize an image.

$image- � Equalize()

Perform a histogram equalization on the image.

180 ImageMagick

Flatten() flatten a sequence of images.

$image- � Coalesce()

This method composites a sequence of images while respecting any page offsets.
A Photoshop image typically starts with an image background and each subse-
quent layer varies in size and offset. Flatten() returns a single image with all the
layers composited onto the first image in the sequence.

Flip reflect an image vertically.

$image- � Flip()

Flip() creates a vertical mirror image by reflecting the pixels around the central
x-axis.

Flop reflect an image horizontally.

$image- � Flop()

Flop() creates a horizontal mirror image by reflecting the pixels around the cen-
tral y-axis.

Frame surround the image with a decorative border.

$image- � Frame(geometry= � geometry, width= � integer, height= � integer,
inner= � =integer, outer= � integer, fill= � color-name)

Frame() adds a simulated three-dimensional border around the image. The color
of the border is defined by fill. Width and height specify the border
width of the vertical and horizontal sides of the frame. The inner and outer
parameters indicate the width of the inner and outer shadows of the frame.
Use Geometry as a shortcut for width, height, inner, and outer (e.g.
10x10+3+3).

Gamma gamma-correct the image.

$image- � Gamma(gamma= � string, red= � float, green= � float, blue= � float)

23 Perl API Methods 181

Use Gamma() to gamma-correct an image. The same image viewed on different
devices will have perceptual differences in the way the image’s intensities are
represented on the screen. Specify individual gamma levels for the red, green,
and blue channels, or adjust all three with the gamma parameter. Values typically
range from 0.8 to 2.3.

You can also reduce the influence of a particular channel with a gamma value of
0.

Get() get an image attribute.

$image- � Get(attribute, ...)

Get() accepts one or more image attributes listed in section 23.1 and return their
value.

ImageToBlob() return image as a Perl variable.

$image- � ImageToBlob()

ImageToBlob() behaves just like Write() except the image is returned as a Perl
variable rather than written to disk. This method accepts the same parameters as
Set() as described in section 23.1.

Implode() apply an implosion/explosion filter.

$image- � Implode(amount= � double)

Implode() applies a special effects filter to the image where amount determines
the amount of implosion. Use a negative amount for an explosive effect.

Label() add a label to an image.

$image- � Label(label= � string)

Use labels to optionally annotate a Postscript or PDF image or the thumbnail
images of a montage created by the Montage() method or montage program.
A label can include any of the special formatting characters described in the
Comment() method description.

182 ImageMagick

Level adjust the level of image contrast.

$image- � Level(levels= � string, ’black-point’= � float, ’mid-point’= � float,
’white-point’= � float)

The white and black points range from 0 to MaxRGB and mid ranges from 0 to
10.

Magnify() scale the image to twice its size.

$image- � Magnify()

Magnify() is a convenience method that scales an image proportionally to twice
its size.

Map() choose a set of colors from another image.

$image- � Map(image= � image-handle, dither= � boolean)

Map() changes the colormap of the image to that of the image given by image.
Use this method to change the colormap in an image or image sequence to a set
of predetermined colors. Set dither to a value other than zero to helps smooth
out the apparent contours produced when sharply reducing colors.

One useful example of mapping is to convert an image to the Netscape 216-color
web safe palette:

$safe = new Image::Magick;
$safe->Read(’Netscape:’);
$image->Map(image=>$safe, dither=>’True’);

MatteFloodfill() floodfill an area with transparency.

$image- � MatteFloodfill(geometry= � geometry, x= � integer, y= � integer,
opacity= � integer, bordercolor= � color-name, fuzz= � float)

MatteFloodfill() changes the transparency value of any pixel that matches opacity
and is an immediate neighbor. If bordercolor is specified, the transparency
value is changed for any neighbor pixel that is not bordercolor. Use Geometry
as a shortcut for x + y (e.g. +10+20).

By default opacity must match a particular pixel transparency exactly. How-
ever, in many cases two transparency values may differ by a small amount.Fuzz
defines how much tolerance is acceptable to consider two transparency values as
the same. For example, set fuzz to 10 and the opacity values of 100 and 102 re-
spectively are now interpreted as the same value for the purposes of the floodfill.

23 Perl API Methods 183

MedianFilter() filter a noisy image.

$image- � MedianFilter(radius= � float)

MedianFilter() applies a digital filter that improves the quality of a noisy image.
Each pixel is replaced by the median in a set of neighboring pixels as defined by
radius.

Minify() scale the image to half its size.

$image- � Magnify()

Minify() is a convenience method that scales an image proportionally to half its
size.

Modulate adjust the brightness, saturation, and hue.

$image- � Modulate(factor= � string, brightness= � float, saturation= � float,
hue= � float)

Modulate() lets you control the brightness, saturation, and hue of an image. Each
parameter is in the form of a percentage relative to 100. For example, to decrease
the brightness by 10

$image->Modulate(brightness=$>$90, saturation=$>$150);

Factor represents the brightness, saturation, and hue as one parameter (e.g.
90/150/100).

Mogrify() alternative calling scheme.

$image- � Mogrify(method, ...)

The Mogrify() method is convenience function that allows you to call any image
manipulation method by giving a method name followed by one or parameters
to pass to the method. The following calls have the same result:

$image->Crop(’340x256+0+0’)
$image->Mogrify(’Crop’, ’340x256+0+0’)

184 ImageMagick

MogrifyRegion() apply method to a region.

$image- � MogrifyRegion(geometry, method, ...)

MogrifyRegion() applies an image manipulation method to a region of the image
as defined by geometry. For example if you want to sharpen a 100 x 100 region
starting at position (20, 20), use: result:

$image->MogrifyRegion(’100x100+20+20’, Sharpen, ’0x1’)

Montage() uniformly tile thumbnails across an image canvas.

$image- � Montage(background= � color-name, bordercolor= � color-name,
borderwidth= � integer, compose= � string, fill= � color-name, font= � string,
frame= � geometry, geometry= � geometry, gravity= � string, label= � string,
mattecolor= � color-name, mode= � string, pointsize= � integer, shadow= � boolean,
stroke= � color-name, texture= � string, tile= � geometry, title= � string,
transparent= � color-name)

The Montage() method is a layout manager that lets you tile one or more thumb-
nails across an image canvas. Use these parameters to control how the layout
manager places the thumbnails:

background The color name for the montage background.
bordercolor The color name for the thumbnail border.
borderwidth The width of the thumbnail border.
compose This operator affects how the thumbnail is composited on the image

canvas. The default is Over. Choose from these operators:

Over, In Out
Atop Xor Plus
Minus Add Subtract
Difference Bumpmap Copy
Displace

fill The fill color paints any areas inside the outline of the thumbnail label.
font A font can be a Truetype (arial.ttf), Postscript (Helvetica), or a fully-qualified

X11 font (-*-helvetica-medium-r-*-*-12-*-*-*-*-*-iso8859-*).
frame Adds a simulated three-dimensional border around each thumbnail. The

color of the border is defined by mattecolor. Specify the border width
of the vertical and horizontal sides of the frame and the inner and outer
shadows of the frame as a geometry (e.g. 10x10+3+3).

geometry Geometry defines the baseline position where a thumbnail is com-
posited (e.g. +100+50).

23 Perl API Methods 185

gravity Gravity affects how the thumbnail is placed relative to the (x, y) baseline
position. By default gravity is South which positions the thumbnail centered
south of the baseline position. Choose from these gravities:

NorthWest North NorthEast
West Center East
SouthWest South SouthEast

label A label optionally appears just below each thumbnail. Use this parameter
to customize the label. See Comment() for a list of embedded formatting
options for the thumbnail label.

mode Define one of three thumbnail framing options:

Frame Unframe Concatentate

The default is Frame which adds a simulated three-dimensional border
around each thumbnail. Unframe tiles thumbnails without any border or
frame, and Concatentate causes each image to be tightly packed with-
out any border, frame, or space between them.

pointsize The font pointsize. The default is 12.
shadow Any value other than 0 will add a simulated shadow beneath and to the

right side of each thumbnail.
stroke The stroke color paints along the outline of any text labels.
texture Tile this image across and down the image canvas before compositing

the image thumbnails.
tile Give the number of thumbnails across and down the canvas as a geometry

string. The default is 5 x 4. If the number of thumbnails exceed this maxi-
mum, more then one image canvas is created.

title Give a title to the montage. The title is centered near the top of the montage
image.

transparent Make this color transparent.

Mosaic() form a single coherent picture.

$image- � Mosiac()

The Mosaic() method takes a set of images and inlays them to form a single co-
herent pictiure. Mosaic() returns a single image with each image in the sequence
inlayed in the image canvas at an offset as defined in the image.

$mosaic = $image->Mosaic();

186 ImageMagick

MotionBlur() simulate motion blur.

$image- � MotionBlur(geometry= � geometry, radius= � float, sigma= � float,
angle= � float)

MotionBlur() simulates motion blur. We convolve the image with a Gaussian op-
erator of the given radius and standard deviation (sigma). For reasonable results,
radius should be larger than sigma. Use a radius of 0 and MotionBlur() selects a
suitable radius for you. Geometry represents radius x sigma as one parameter
(e.g. 0x1). Angle gives the angle of the blurring motion.

Morph() morph a set of images.

$image- � Morph(frames= � integer)

The Morph() method requires a minimum of two images. The first image is
transformed into the second by a number of intervening images as specified by
frames. The result is returned as a new image sequence, for example:

$morph = $image->Morph(30);

Negate apply color inversion.

$image- � Negate(gray= � boolean)

Negate() negates the intensities of each pixel in the image. If gray is a value
other than 0, only the grayscale pixels are inverted.

New() create an image object.

$image = new Image::Magick;
$image = Image::Magick-¿New()

New() instantiates an image object. As a convenience, you can set any image at-
tribute that Set() knows about. See section ?? for a list of known image attributes.
Here is an example:

$image = Image::Magick->New(size=>’160x120’);
$image->Read(’gray:protein’);

23 Perl API Methods 187

Normalize() enhance image contrast.

$image- � Normalize()

The Normalize() method enhances the contrast of a color image by adjusting the
pixels color to span the entire range of colors available.

OilPaint() simulate an oil painting.

$image- � OilPaint(radius= � integer)

OilPaint() applies a special effect filter that simulates an oil painting. Each pixel
is replaced by the most frequent color occurring in a circular region defined by
radius.

Opaque() globally change a color.

$image- � Opaque(color= � color-name, fill= � color-name, fuzz= � float)

Opaque() changes any pixel that matches color with the color defined by
fill.

By default colormust match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10
and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

OrderedDither() reduce the image to black and white.

$image- � OrderedDither()

The OrderedDither() method reduces the image to black and white.

Ping() get information about an image.

$image- � Ping(filename= � string, file= � file-handle, blob= � blob)

Ping() is a convenience method that returns information about an image without
having to read the image into memory. It returns the width, height, file size in
bytes, and the file format of the image. You can specify more than one filename
but only one filehandle:

($width, $height, $size, $format) = $image->Ping(’logo.gif’);
($width, $height, $size, $format) = $image->Ping(file=>*IMAGE);
($width, $height, $size, $format) = $image->Ping(blob=>\$blob);

188 ImageMagick

Profile() add, remove, or apply an image profile.

$image- � Profile(name= � variable, profile= � blob)

The Profile() method adds, removes, or applies an image profile. The two most
common profiles are ICC, a color management option, IPTC, a newswire profile,
and APP1, which is a JPEG marker that can contain EXIF data. Profile is a
Perl variable representing the binary profile information. To remove all profiles
from the image, use an asterick as the profile name:

$image->Profile(’*’);

Quantize() set the maximum number of colors in an image.

$image- � Quantize(colors= � integer, colorspace= � string, dither= � boolean,
global colormap= � booleanmeasure error= � boolean, tree depth= � integer)

The Quantize() method sets the maximum number of colors in an image. If the
number of colors in the image exceeds colors, a color reduction algorithm
repeatly merges pixels of similar color until the total number of unique colors
is less or equal to the maximum. Here is a description of the color reduction
parameters:

colors Set the maximum number of colors in the image.
colorspace By default, color merging is performed in the RGB colorspace.

However, RGB is not perceptually uniform like YCbCr for example. You
may get better results by trying one of the following colorspaces:

CMYK Gray OHTA
RGB sRGB Transparent
XYZ YCbCr YCC
YIQ YPbPr YUV

dither Images which suffer from severe contouring when reducing colors can
be improved with this option.

global colormap A value other than 0 creates one global colormap for a se-
quence of images.

measure error A value other than 0 returns a measure of how closely the color
reduced image matches the original. The mean error, normalized mean error,
and normalized maximum mean error per pixel are computed. Obtain these
values with the Get() method.

tree depth By default, the color reduction uses a Oct-tree algorithm whose
depth ranges from 1-8 which is optimally determined to allow the best repre-
sentation of the image with the fastest computational speed and least amount
of memory consumption. You can override the default with this parameter.

23 Perl API Methods 189

QueryColor() return numerical values corresponding to a color name.

$image- � QueryColor(...)

Call QueryColor() with no parameters to return a list of known colors names
or specify one or more color names to get these attributes: red, green, blue, and
opacity value.

@colors = $image->QueryColor();
($red, $green, $blue, $opacity) = $image->QueryColor(’red’);
($red, $green, $blue, $opacity) = $image->QueryColor(’#716bae’);

QueryColorName() return a color name corresponding to the numerical values.

$image- � QueryColorName(...)

QueryColorName() accepts one or more numerical values and returns their re-
spective color name:

$color = $image->QueryColorName(’rgba(65535,0,0,0)’);

QueryFont() get font attributes.

$image- � QueryFont(...)

Call QueryFont() with no parameters to return a list of known fonts or specify
one or more font names to get these attributes: font name, description, family,
style, stretch, weight, encoding, foundry, format, metrics, and glyphs values.

@fonts = $image->QueryFont();
$weight = ($image->QueryFont(’Helvetica’))[5];

QueryFontMetric() query font metrics.

$image- � QueryFontMetrics(font=¿string, ...)

QueryFontMetrics() accepts a font name and any parameter acceptable to Anno-
tate(). The method returns these attributes associated with the given font:

� character width� character height� ascender

190 ImageMagick

� descender� text width� text height� maximum horizontal advance

For example,

@metrics = $image->QueryFontMetrics(font=>’arial.ttf’, pointsize=>24);

QueryFormat() get image format attributes.

$image- � QueryFormat(...)

Call QueryFormat() with no parameters to return a list of known image formats
or specify one or more format names to get these attributes: adjoin, blob support,
raw, format, decoder, encoder, description, and module.

@formats = $image->QueryFormat();
($adjoin, $blob_support, $raw, $decoder, $encoder, $description, $module) = $image->QueryFormat(’gif’);

Raise() lighten or darken edges to create a 3-D effect.

$image- � Raise(geometry= � geometry, width= � integer, height= � integer,
raise= � boolean)

Raise() creates a simulated three-dimensional button-like effect by lightening
and darkening the edges of the image. Width and height define the width of
the vertical and horizontal edge of the effect. Use Geometry as a shortcut for
width and height (e.g. 10x10).

A value other than 0 for raise simulates a raised button-like effect otherwise
a sunken button-like effect is applied to the image.

Read() read one or more image files.

$image- � Read(filename= � float, file= � file-handle)

filename the name of an image file.
file-handle read the image from an open filehandle.

The Read() method reads an image or image sequence from one or more file-
names or the filehandle you specify. You can specify more than one filename but
only one filehandle:

23 Perl API Methods 191

$image->Read(filename=$>$’logo.gif’); # read a single GIF into
$image object.

$image->Read(’logo.jpg’, ’button.gif’); # read two images.
$image->Read(’*.png’); # read all the PNG files in the

current directory.
$image->Read(file=$>$*IMAGE); # read from open Perl filehandle.

Read() returns the number of images that were successfully read.

ReduceNoise() smooth an image.

$image- � ReduceNoise(radius= � float)

The ReduceNoise() method smooths the contours of an image while still pre-
serving edge information. The algorithm works by replacing each pixel with its
neighbor closest in value. A neighbor is defined by radius. Use a radius of 0
and ReduceNoise() selects a suitable radius for you.

Resize() scale an image with a filter.

$image- � Resize(geometry= � geometry, width= � integer, height= � integer,
filter= � string, blur= � float)

Resize() scales an image to the desired dimensions with one of these filters:

Bessel Blackman Box
Catrom Cubic Gaussian
Hanning Hermite Lanczos
Mitchell Point Quadratic
Sinc Triangle

The default is Lanczos.

Use width and height to specify the image size, or use geometry as a
shortcut (e.g. 640x480).

Set Blur to a value greater than 1 to blur the image as it is scaled. A value less
than 1 sharpens as the image is scaled.

Roll() offset and roll over an image.

$image- � Roll(geometry= � geometry, x= � integer, y= � integer)

Roll() offsets an image as defined by x and y. Geometry represents + x + y as
one parameter (e.g. +10+20).

192 ImageMagick

Rotate() rotate an image.

$image- � Rotate(degrees= � float, color= � color-name)

Rotate() rotates an image around the x axis by the number of degrees bydegrees.
Any empty spaces are filled with color.

Sample() sample an image.

$image- � Sample(geometry= � geometry,width= � integer, height= � integer)

Sample() scales an image to the desired dimensions with pixel sampling. Unlike
other scaling methods, this method does not introduce any additional color into
the scaled image.

Use width and height to specify the image size, or use geometry as a
shortcut (e.g. 640x480).

Scale() scale an image to given dimensions.

$image- � Scale(geometry= � geometry, width= � integer, height= � integer)

Scale() changes the size of an image to the given dimensions. Use width and
height to specify the image size, or use geometry as a shortcut (e.g. 640x480).

Segment() segment an image.

$image- � Segment(geometry= � geometry, cluster threshold= � float, smooth-
ing threshold= � float, colorspace= � string, verbose= � boolean)

Segment() segments an image by by analyzing the histograms of the color com-
ponents and identifying units that are homogeneous. The default value for cluster threshold
is 1.0 and smoothing threshold is 1.5. This can be represented with a
shortcut geometry of 1.0x1.5.

Set() set an image attribute.

$image- � Set(attribute, ...)

Set() accepts one or more image attributes listed in section 23.1 and sets their
value.

23 Perl API Methods 193

Shade() shade the image with light source.

$image- � Shade(geometry= � geometry, azimuth= � float, elevation= � float,
color= � boolean)

Shade() shines a distant light on an image to create a three-dimensional effect.
You control the positioning of the light with azimuth and elevation; azimuth is
measured in degrees off the x axis and elevation is measured in pixels above
the Z axis. The geometry parameter is a shortcut for azimuth x elevation (e.g.
30x30).

Sharpen() sharpen an image.

$image- � Sharpen(geometry= � geometry, radius= � float, sigma= � float)

Sharpen() sharpens an image. We convolve the image with a Gaussian operator
of the given radius and standard deviation (sigma). For reasonable results, radius
should be larger than sigma. Use a radius of 0 and Sharpen() selects a suitable
radius for you. Geometry represents radius x sigma as one parameter (e.g.
0x1).

Shave() shave pixels from the image edges.

$image- � Border(geometry= � geometry,width= � integer, height= � integer)

This method shaves pixels from the image edges. Geometry represents width
x height as one parameter (e.g. 10x5).

Shear() shear an image.

$image- � Shear(geometry= � geometry, x= � float, y= � float, color= � color-
name)

Shear() transforms an image by shearing it along the x or y axis. The x and y pa-
rameters specify the degree of shear and ranges from -179.9 to 179.9.Geometry
represents x x y as one parameter (e.g. 30x60). Any empty spaces created when
shearing are filled with color.

Signature() generate an SHA-256 message digest.

$image- � Signature()

Signature() generates an SHA-256 message digest across all the image pixels.
The signature can later be used to verify the color integrity of the image. Two
images with the same signature are identical.

194 ImageMagick

Solarize() apply solorization special effect.

$image- � Solarize(threshold= � float)

Solarize() applies a special effect to the image, similar to the effect achieved in
a photo darkroom by selectively exposing areas of photo sensitive paper to light.
Threshold ranges from 0 to MaxRGB and is a measure of the extent of the
solarization.

Spread() randomly displace pixels.

$image- � Spread(amount= � integer)

Spead() is a special effects method that randomly displaces each pixel in a block
defined by the amount parameter.

Stereo() create a stereo special effect.

$image- � Stereo(image= � image-handle)

Stereo() combines two images and produces a single image that is the composite
of a left and right image of a stereo pair. Special red-green stereo glasses are
required to view this effect.

Stegano() hide a digital watermark.

$image- � Stegano(image= � image-handle, offset= � integer)

Use Stegano() to hide a digital watermark within the image. Recover the hidden
watermark later to prove that the authenticity of an image. textttOffset defines
the start position within the image to hide the watermark.

Swirl() swirl pixels about image center.

$image- � Swirl(degrees= � float)

The Swirl() method swirls the pixels about the center of the image, wheredegrees
indicates the sweep of the arc through which each pixel is moved. You get a more
dramatic effect as the degrees move from 1 to 360.

23 Perl API Methods 195

Texture() tile a texture on image background.

$image- � Texture(texture= � image-handle)

Texture() repeatedly tiles the texture image across and down the image canvas.

Threshold() divide pixels based on intensity values.

$image- � Threshold(threshold= � integer)

Threshold() changes the value of individual pixels based on the intensity of each
pixel compared to threshold. The result is a high-contrast, two color image.

Transform() resize or crop an image.

$image- � Transform(geometry= � string, crop= � string)

Transform() behaves like Resize() or Crop() but rather than acting on the image,
it returns a new image handle:

$slices = $image->Transform(crop=>’100x100’)

Transparent() make color transparent.

$image- � Transparent(color= � color-name, opacity= � integer fuzz= � float)

Transparent() changes the opacity value associated with any pixel that matches
color to the value defined by opacity.

By default colormust match a particular pixel color exactly. However, in many
cases two colors may differ by a small amount. Fuzz defines how much toler-
ance is acceptable to consider two colors as the same. For example, set fuzz to 10
and the color red at intensities of 100 and 102 respectively are now interpreted
as the same color.

Trim() remove background color from edges of image.

$image- � Trim(fuzz= � float)

Trim() crops a rectangular box around the image to remove edges that are the
background color.

By default the edge pixels must match in color exactly to be trimmed. However,
in many cases two colors may differ by a small amount. Fuzz defines how
much tolerance is acceptable to consider two colors as the same. For example,
set fuzz to 10 and the color red at intensities of 100 and 102 respectively are now
interpreted as the same color.

196 ImageMagick

UnsharpMask() sharpen an image.

$image- � UnsharpMask(geometry= � geometry, radius= � float, sigma= � float,
amount= � float, threshold= � float)

UnsharpMask() sharpens an image. We convolve the image with a Gaussian op-
erator of the given radius and standard deviation (sigma). For reasonable results,
radius should be larger than sigma. Use a radius of 0 and UnsharpMask() selects
a suitable radius for you. Geometry represents radius x sigma as one parameter
(e.g. 0x1).

Wave() special effects filter.

$image- � Wave(geometry= � string, amplitude= � float, wavelength= � float)

The Wave() filter creates a ”ripple” effect in the image by shifting the pixels
vertically along a sine wave whose amplitude and wavelength is specified by the
given parameters. Geometry represents amplitude x wavelength as one param-
eter (e.g. 30x30).

Write() write one or more image files.

$image- � Write(filename= � float, file= � file-handle)

Write() allows you to write a single or image or a sequence to a file or filehandle.
You can specify more than one filename but only one filehandle:

$image->Write(filename=>’logo.gif’); # write a single GIF image.
$image->Write(’logo.jpg’, ’button.gif’); # write two images.
$image->Write(’gif:-’); # write to STDOUT.
$image->[0]->Write(’logo.png’); # write only first image

in a sequence.
$image->Write(file=>*IMAGE); # write to a open Perl filehandle.

Write() returns the number of images that were written.

23.3 Image::Magick Errors

Most Image::Magick methods return an undefined value if the operation was
successful. When an error occurs, a message is returned with an embedded nu-
meric status code. Look up the status code in table ?? to determine the reason the
operation failed. The mnemonics are aliases for the the corresponding numeric
codes.

23 Perl API Methods 197

Table23.1: Error and Warning Codes

Error and Warning Codes

Code Mnemonic Description
0 Success Method completed without an error or warning.
300 ResourceLimitWarning A program resource is exhausted (e.g. not enough mem-

ory).
305 TypeWarning A font is unavailable; a substitution may have occured.
310 OptionWarning An option parameter was malformed.
315 DelegateWarning An ImageMagick delegate returned a warning.
320 MissingDelegateWarning The image type can not be read or written because the

required delegate is missing.
325 CorruptImageWarning The image file may be corrupt.
330 FileOpenWarning The image file could not be opened.
335 BlobWarning A Binary Large OBject could not be allocated.
340 StreamWarning There was a problem reading or writing from a stream.
345 CacheWarning Pixels could not be saved to the pixel cache.
385 XServerWarning An X resource is unavailable.
390 RegistryWarning There was a problem getting or setting the registry.
395 ConfigurationWarning There was a problem getting a configuration file.
400 ResourceLimitError A program resource is exhausted (e.g. not enough mem-

ory).
405 TypeError A font is unavailable; a substitution may have occured.
410 OptionError An option parameter was malformed.
415 DelegateError An ImageMagick delegate returned a warning.
420 MissingDelegateError The image type can not be read or written because the

required delegate is missing.
425 CorruptImageError The image file may be corrupt.
430 FileOpenError The image file could not be opened.
435 BlobError A Binary Large OBject could not be allocated.
440 StreamError There was a problem reading or writing from a stream.
445 CacheError Pixels could not be saved to the pixel cache.
485 XServerError An X resource is unavailable.
490 RegistryError There was a problem getting or setting the registry.
495 ConfigurationError There was a problem getting a configuration file.

24 Recognized Color
Keyword Names

The following is the list of recognized color keywords that can be used whenever
a color is needed for the ImageMagick command-line utilities or API methods.
The color keyword names follow the W3C SVG 1.0 Specification with the addi-
tion of gray color names gray1 thru gray100.

Table24.1: Color Names

ImageMagick Colors

Color Name Color Name
aliceblue rgba(240, 248, 255, 0) gray71 rgba(181, 181, 181, 0)
antiquewhite rgba(250, 235, 215, 0) gray72 rgba(184, 184, 184, 0)
aqua rgba(0, 255, 255, 0) gray73 rgba(186, 186, 186, 0)
aquamarine rgba(127, 255, 212, 0) gray74 rgba(189, 189, 189, 0)
azure rgba(240, 255, 255, 0) gray75 rgba(191, 191, 191, 0)
beige rgba(245, 245, 220, 0) gray76 rgba(194, 194, 194, 0)
bisque rgba(255, 228, 196, 0) gray77 rgba(196, 196, 196, 0)
black rgba(0, 0, 0, 0) gray78 rgba(199, 199, 199, 0)
blanchedalmond rgba(255, 235, 205, 0) gray79 rgba(201, 201, 201, 0)
blue rgba(0, 0, 255, 0) gray8 rgba(20, 20, 20, 0)
blueviolet rgba(138, 43, 226, 0) gray80 rgba(204, 204, 204, 0)
brown rgba(165, 42, 42, 0) gray81 rgba(207, 207, 207, 0)
burlywood rgba(222, 184, 135, 0) gray82 rgba(209, 209, 209, 0)
cadetblue rgba(95, 158, 160, 0) gray83 rgba(212, 212, 212, 0)
chartreuse rgba(127, 255, 0, 0) gray84 rgba(214, 214, 214, 0)
chocolate rgba(210, 105, 30, 0) gray85 rgba(217, 217, 217, 0)
coral rgba(255, 127, 80, 0) gray86 rgba(219, 219, 219, 0)
cornflowerblue rgba(100, 149, 237, 0) gray87 rgba(222, 222, 222, 0)
cornsilk rgba(255, 248, 220, 0) gray88 rgba(224, 224, 224, 0)

198

24 Recognized Color Keyword Names 199

ImageMagick Colors (continued)

Color Name Color Name
crimson rgba(220, 20, 60, 0) gray89 rgba(227, 227, 227, 0)
cyan rgba(0, 255, 255, 0) gray9 rgba(23, 23, 23, 0)
darkblue rgba(0, 0, 139, 0) gray90 rgba(229, 229, 229, 0)
darkcyan rgba(0, 139, 139, 0) gray91 rgba(232, 232, 232, 0)
darkgoldenrod rgba(184, 134, 11, 0) gray92 rgba(235, 235, 235, 0)
darkgray rgba(169, 169, 169, 0) gray93 rgba(237, 237, 237, 0)
darkgreen rgba(0, 100, 0, 0) gray94 rgba(240, 240, 240, 0)
darkgrey rgba(169, 169, 169, 0) gray95 rgba(242, 242, 242, 0)
darkkhaki rgba(189, 183, 107, 0) gray96 rgba(245, 245, 245, 0)
darkmagenta rgba(139, 0, 139, 0) gray97 rgba(247, 247, 247, 0)
darkolivegreen rgba(85, 107, 47, 0) gray98 rgba(250, 250, 250, 0)
darkorange rgba(255, 140, 0, 0) gray99 rgba(252, 252, 252, 0)
darkorchid rgba(153, 50, 204, 0) green rgba(0, 128, 0, 0)
darkred rgba(139, 0, 0, 0) greenyellow rgba(173, 255, 47, 0)
darksalmon rgba(233, 150, 122, 0) grey rgba(128, 128, 128, 0)
darkseagreen rgba(143, 188, 143, 0) honeydew rgba(240, 255, 240, 0)
darkslateblue rgba(72, 61, 139, 0) hotpink rgba(255, 105, 180, 0)
darkslategray rgba(47, 79, 79, 0) indianred rgba(205, 92, 92, 0)
darkslategrey rgba(47, 79, 79, 0) indigo rgba(75, 0, 130, 0)
darkturquoise rgba(0, 206, 209, 0) ivory rgba(255, 255, 240, 0)
darkviolet rgba(148, 0, 211, 0) khaki rgba(240, 230, 140, 0)
deeppink rgba(255, 20, 147, 0) lavender rgba(230, 230, 250, 0)
deepskyblue rgba(0, 191, 255, 0) lavenderblush rgba(255, 240, 245, 0)
dimgray rgba(105, 105, 105, 0) lawngreen rgba(124, 252, 0, 0)
dimgrey rgba(105, 105, 105, 0) lemonchiffon rgba(255, 250, 205, 0)
dodgerblue rgba(30, 144, 255, 0) lightblue rgba(173, 216, 230, 0)
firebrick rgba(178, 34, 34, 0) lightcoral rgba(240, 128, 128, 0)
floralwhite rgba(255, 250, 240, 0) lightcyan rgba(224, 255, 255, 0)
forestgreen rgba(34, 139, 34, 0) lightgoldenrodyellow rgba(250, 250, 210, 0)
fractal rgba(128, 128, 128, 0) lightgray rgba(211, 211, 211, 0)
fuchsia rgba(255, 0, 255, 0) lightgreen rgba(144, 238, 144, 0)
gainsboro rgba(220, 220, 220, 0) lightgrey rgba(211, 211, 211, 0)
ghostwhite rgba(248, 248, 255, 0) lightpink rgba(255, 182, 193, 0)
gold rgba(255, 215, 0, 0) lightsalmon rgba(255, 160, 122, 0)
goldenrod rgba(218, 165, 32, 0) lightseagreen rgba(32, 178, 170, 0)
gray rgba(126, 126, 126, 0) lightskyblue rgba(135, 206, 250, 0)
gray0 rgba(0, 0, 0, 0) lightslategray rgba(119, 136, 153, 0)
gray1 rgba(3, 3, 3, 0) lightslategrey rgba(119, 136, 153, 0)
gray10 rgba(26, 26, 26, 0) lightsteelblue rgba(176, 196, 222, 0)
gray100 rgba(255, 255, 255, 0) lightyellow rgba(255, 255, 224, 0)
gray11 rgba(28, 28, 28, 0) lime rgba(0, 255, 0, 0)

200 ImageMagick

ImageMagick Colors (continued)

Color Name Color Name
gray12 rgba(31, 31, 31, 0) limegreen rgba(50, 205, 50, 0)
gray13 rgba(33, 33, 33, 0) linen rgba(250, 240, 230, 0)
gray14 rgba(36, 36, 36, 0) magenta rgba(255, 0, 255, 0)
gray15 rgba(38, 38, 38, 0) maroon rgba(128, 0, 0, 0)
gray16 rgba(41, 41, 41, 0) mediumaquamarine rgba(102, 205, 170, 0)
gray17 rgba(43, 43, 43, 0) mediumblue rgba(0, 0, 205, 0)
gray18 rgba(46, 46, 46, 0) mediumorchid rgba(186, 85, 211, 0)
gray19 rgba(48, 48, 48, 0) mediumpurple rgba(147, 112, 219, 0)
gray2 rgba(5, 5, 5, 0) mediumseagreen rgba(60, 179, 113, 0)
gray20 rgba(51, 51, 51, 0) mediumslateblue rgba(123, 104, 238, 0)
gray21 rgba(54, 54, 54, 0) mediumspringgreen rgba(0, 250, 154, 0)
gray22 rgba(56, 56, 56, 0) mediumturquoise rgba(72, 209, 204, 0)
gray23 rgba(59, 59, 59, 0) mediumvioletred rgba(199, 21, 133, 0)
gray24 rgba(61, 61, 61, 0) midnightblue rgba(25, 25, 112, 0)
gray25 rgba(64, 64, 64, 0) mintcream rgba(245, 255, 250, 0)
gray26 rgba(66, 66, 66, 0) mistyrose rgba(255, 228, 225, 0)
gray27 rgba(69, 69, 69, 0) moccasin rgba(255, 228, 181, 0)
gray28 rgba(71, 71, 71, 0) navajowhite rgba(255, 222, 173, 0)
gray29 rgba(74, 74, 74, 0) navy rgba(0, 0, 128, 0)
gray3 rgba(8, 8, 8, 0) none rgba(0, 0, 0, 255)
gray30 rgba(77, 77, 77, 0) oldlace rgba(253, 245, 230, 0)
gray31 rgba(79, 79, 79, 0) olive rgba(128, 128, 0, 0)
gray32 rgba(82, 82, 82, 0) olivedrab rgba(107, 142, 35, 0)
gray33 rgba(84, 84, 84, 0) orange rgba(255, 165, 0, 0)
gray34 rgba(87, 87, 87, 0) orangered rgba(255, 69, 0, 0)
gray35 rgba(89, 89, 89, 0) orchid rgba(218, 112, 214, 0)
gray36 rgba(92, 92, 92, 0) palegoldenrod rgba(238, 232, 170, 0)
gray37 rgba(94, 94, 94, 0) palegreen rgba(152, 251, 152, 0)
gray38 rgba(97, 97, 97, 0) paleturquoise rgba(175, 238, 238, 0)
gray39 rgba(99, 99, 99, 0) palevioletred rgba(219, 112, 147, 0)
gray4 rgba(10, 10, 10, 0) papayawhip rgba(255, 239, 213, 0)
gray40 rgba(102, 102, 102, 0) peachpuff rgba(255, 218, 185, 0)
gray41 rgba(105, 105, 105, 0) peru rgba(205, 133, 63, 0)
gray42 rgba(107, 107, 107, 0) pink rgba(255, 192, 203, 0)
gray43 rgba(110, 110, 110, 0) plum rgba(221, 160, 221, 0)
gray44 rgba(112, 112, 112, 0) powderblue rgba(176, 224, 230, 0)
gray45 rgba(115, 115, 115, 0) purple rgba(128, 0, 128, 0)
gray46 rgba(117, 117, 117, 0) red rgba(255, 0, 0, 0)
gray47 rgba(120, 120, 120, 0) rosybrown rgba(188, 143, 143, 0)
gray48 rgba(122, 122, 122, 0) royalblue rgba(65, 105, 225, 0)
gray49 rgba(125, 125, 125, 0) saddlebrown rgba(139, 69, 19, 0)

24 Recognized Color Keyword Names 201

ImageMagick Colors (continued)

Color Name Color Name
gray5 rgba(13, 13, 13, 0) salmon rgba(250, 128, 114, 0)
gray50 rgba(127, 127, 127, 0) sandybrown rgba(244, 164, 96, 0)
gray51 rgba(130, 130, 130, 0) seagreen rgba(46, 139, 87, 0)
gray52 rgba(133, 133, 133, 0) seashell rgba(255, 245, 238, 0)
gray53 rgba(135, 135, 135, 0) sienna rgba(160, 82, 45, 0)
gray54 rgba(138, 138, 138, 0) silver rgba(192, 192, 192, 0)
gray55 rgba(140, 140, 140, 0) skyblue rgba(135, 206, 235, 0)
gray56 rgba(143, 143, 143, 0) slateblue rgba(106, 90, 205, 0)
gray57 rgba(145, 145, 145, 0) slategray rgba(112, 128, 144, 0)
gray58 rgba(148, 148, 148, 0) slategrey rgba(112, 128, 144, 0)
gray59 rgba(150, 150, 150, 0) snow rgba(255, 250, 250, 0)
gray6 rgba(15, 15, 15, 0) springgreen rgba(0, 255, 127, 0)
gray60 rgba(153, 153, 153, 0) steelblue rgba(70, 130, 180, 0)
gray61 rgba(156, 156, 156, 0) tan rgba(210, 180, 140, 0)
gray62 rgba(158, 158, 158, 0) teal rgba(0, 128, 128, 0)
gray63 rgba(161, 161, 161, 0) thistle rgba(216, 191, 216, 0)
gray64 rgba(163, 163, 163, 0) tomato rgba(255, 99, 71, 0)
gray65 rgba(166, 166, 166, 0) turquoise rgba(64, 224, 208, 0)
gray66 rgba(168, 168, 168, 0) violet rgba(238, 130, 238, 0)
gray67 rgba(171, 171, 171, 0) wheat rgba(245, 222, 179, 0)
gray68 rgba(173, 173, 173, 0) white rgba(255, 255, 255, 0)
gray69 rgba(176, 176, 176, 0) whitesmoke rgba(245, 245, 245, 0)
gray7 rgba(18, 18, 18, 0) yellow rgba(255, 255, 0, 0)
gray70 rgba(179, 179, 179, 0) yellowgreen rgba(154, 205, 50, 0)
gray71 rgba(181, 181, 181, 0)

References

[1] Dalrymple, F., Pringle, S. (1999) Cognitive Disfunction. 49, 581–623

202

A Appendix A

203

